Katsyuba Sergey A, Zvereva Elena E, Grimme Stefan
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS , Arbuzov street, 8 , Kazan 420088 , Russia.
Mulliken Center for Theoretical Chemistry , Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4 , 53115 Bonn , Germany.
J Phys Chem A. 2019 May 2;123(17):3802-3808. doi: 10.1021/acs.jpca.9b01688. Epub 2019 Apr 18.
The ability of the quantum chemical computations to reproduce spectral positions and relative intensities of infrared (IR) bands for experimental vibrational spectra of organic molecules is assessed. The efficient B97-3c density functional approximation, routinely applicable to hundreds of atoms on a single processor, has been applied for the simulation of IR spectra for species containing up to 216 atoms. The results demonstrate that B97-3c, being much faster than the well-recognized hybrid functional B3LYP, offers similarly good quantitative performance in comparison to experimental data for relative IR intensities and fundamental frequencies (ν ≤ 2200 cm) for isolated molecules comprising from 3 to 21 first- or second-row atoms.
评估了量子化学计算对有机分子实验振动光谱的红外(IR)谱带位置和相对强度的再现能力。高效的B97 - 3c密度泛函近似方法通常可在单个处理器上应用于数百个原子,已被用于模拟含多达216个原子的物种的红外光谱。结果表明,与广为人知的杂化泛函B3LYP相比,B97 - 3c速度要快得多,对于由3至21个第一或第二周期原子组成的孤立分子,其相对红外强度和基频(ν≤2200 cm)与实验数据相比具有同样良好的定量性能。