Instituto de Física da Universidade de São Paulo, São Paulo-SP, 05508-090, Brazil. Author to whom any correspondence should be addressed.
Phys Med Biol. 2019 May 10;64(10):105010. doi: 10.1088/1361-6560/ab171a.
Mean glandular dose is the quantity used for dosimetry in mammography and depends on breast-related characteristics, such as thickness and density, and on the x-ray spectrum used for breast imaging. This work aims to present an experimentally-based method to derive polyenergetic normalized glandular dose coefficients (DgN) from the spectral difference between x-ray spectra incident and transmitted through breast phantoms with glandular/adipose proportions of 30/70 and 50/50 and thicknesses up to 4.5 cm. The spectra were produced by a Mammomat 3000 Nova system using radiographic techniques commonly applied for imaging compressed breast thickness lower than 6 cm (Mo/Mo, Mo/Rh and W/Rh spectra at 26 and 28 kVp). DgN coefficients were compared with values estimated using Boones' method and data from breast images (DICOM Organ Dose and VolparaDose calculations). The DgN were also evaluated in layers into the phantoms (depth-DgN) using both x-ray spectra and thermoluminescent dosimeters (TLD-100). Maximum differences between DgN from the method presented in this study and results using Boone's method was 11%, with larger differences for Mo/Rh spectra in relation to the Mo/Mo. The DgN maximum differences to the coefficients obtained using patient images were 8.0%, for the DgN calculated using Volpara and 6.4% for the DgN from DICOM Organ Dose, for a 4.5 cm breast phantom with 30% glandularity. The DgN estimated from the depth-DgN distributions differ up to 5.2% to the coefficients obtained using the pair incident-transmitted spectra to calculate the DgN directly in the whole phantom. The depth-DgN distributions estimated with TLDs were consistent with the results observed using the experimental spectra, with maximum difference of 3.9%. In conclusion, polyenergetic x-ray spectrometry proved to be an applicable tool for research in dosimetry in mammography allowing spectral characterization. This approach can also be useful for investigation of the influence of x-ray spectra on glandular dose.
平均腺体剂量是乳腺摄影中用于剂量学的量,取决于与乳房相关的特征,如厚度和密度,以及用于乳房成像的 X 射线光谱。本工作旨在提出一种基于实验的方法,从通过具有腺体/脂肪比例为 30/70 和 50/50 以及厚度高达 4.5cm 的乳房体模的入射和透射 X 射线光谱之间的光谱差异中得出多能归一化腺体剂量系数 (DgN)。使用 Mammomat 3000 Nova 系统产生光谱,该系统使用常用于成像厚度低于 6cm 的压缩乳房的射线照相技术(Mo/Mo、Mo/Rh 和 W/Rh 光谱在 26 和 28 kVp 下)。DgN 系数与使用 Boones 方法和乳腺图像(DICOM 器官剂量和 VolparaDose 计算)估计的值进行了比较。还使用两种 X 射线光谱和热释光剂量计(TLD-100)在体模中分层评估 DgN(深度-DgN)。本研究中提出的方法与使用 Boone 方法得到的 DgN 之间的最大差异为 11%,Mo/Rh 光谱与 Mo/Mo 相比差异较大。对于 30%腺体的 4.5cm 乳房体模,与使用患者图像获得的系数相比,DgN 的最大差异为 8.0%,用于 Volpara 的 DgN 和 6.4%,用于 DICOM 器官剂量的 DgN。从深度-DgN 分布估计的 DgN 与直接在整个体模中使用入射-透射光谱计算 DgN 时获得的系数相差高达 5.2%。使用 TLD 估计的深度-DgN 分布与使用实验光谱观察到的结果一致,最大差异为 3.9%。总之,多能 X 射线光谱法被证明是乳腺摄影剂量学研究的一种适用工具,允许光谱特征化。这种方法也可用于研究 X 射线光谱对腺体剂量的影响。