Ortiz Rocio, Aurrekoetxea-Rodríguez Iskander, Rommel Mathias, Quintana Iban, Vivanco Maria dM, Toca-Herrera Jose Luis
Ultraprecision Processes Unit, IK4-TEKNIKER, C/Iñaki Goenaga 5, 20600 Eibar, Spain.
CIC bioGUNE, Technology Park of Bizkaia, Ed. 801A, 48160 Derio, Spain.
Polymers (Basel). 2018 Dec 3;10(12):1337. doi: 10.3390/polym10121337.
New strategies in regenerative medicine include the implantation of stem cells cultured in bio-resorbable polymeric scaffolds to restore the tissue function and be absorbed by the body after wound healing. This requires the development of appropriate micro-technologies for manufacturing of functional scaffolds with controlled surface properties to induce a specific cell behavior. The present report focuses on the effect of substrate topography on the behavior of human mesenchymal stem cells (MSCs) before and after co-differentiation into adipocytes and osteoblasts. Picosecond laser micromachining technology (PLM) was applied on poly (L-lactide) (PLLA), to generate different microstructures (microgrooves and microcavities) for investigating cell shape, orientation, and MSCs co-differentiation. Under certain surface topographical conditions, MSCs modify their shape to anchor at specific groove locations. Upon MSCs differentiation, adipocytes respond to changes in substrate height and depth by adapting the intracellular distribution of their lipid vacuoles to the imposed physical constraints. In addition, topography alone seems to produce a modest, but significant, increase of stem cell differentiation to osteoblasts. These findings show that PLM can be applied as a high-efficient technology to directly and precisely manufacture 3D microstructures that guide cell shape, control adipocyte morphology, and induce osteogenesis without the need of specific biochemical functionalization.
再生医学的新策略包括植入在生物可吸收聚合物支架中培养的干细胞,以恢复组织功能,并在伤口愈合后被身体吸收。这需要开发合适的微技术,用于制造具有可控表面特性的功能性支架,以诱导特定的细胞行为。本报告重点关注基质形貌对人间充质干细胞(MSCs)在共分化为脂肪细胞和成骨细胞之前和之后行为的影响。将皮秒激光微加工技术(PLM)应用于聚(L-丙交酯)(PLLA),以产生不同的微观结构(微槽和微腔),用于研究细胞形状、取向和MSCs的共分化。在某些表面形貌条件下,MSCs会改变其形状,以锚定在特定的沟槽位置。在MSCs分化时,脂肪细胞通过使脂质空泡的细胞内分布适应施加的物理限制,来响应基质高度和深度的变化。此外,仅形貌似乎就能使干细胞向成骨细胞的分化适度但显著增加。这些发现表明,PLM可作为一种高效技术,直接精确地制造三维微观结构,以引导细胞形状、控制脂肪细胞形态并诱导成骨,而无需特定的生化功能化。