Suppr超能文献

通过双同位素指纹识别和机器学习区分二氧化硅纳米颗粒的来源。

Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning.

作者信息

Yang Xuezhi, Liu Xian, Zhang Aiqian, Lu Dawei, Li Gang, Zhang Qinghua, Liu Qian, Jiang Guibin

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Nat Commun. 2019 Apr 8;10(1):1620. doi: 10.1038/s41467-019-09629-5.

Abstract

One of the key shortcomings in the field of nanotechnology risk assessment is the lack of techniques capable of source tracing of nanoparticles (NPs). Silica is the most-produced engineered nanomaterial and also widely present in the natural environment in diverse forms. Here we show that inherent isotopic fingerprints offer a feasible approach to distinguish the sources of silica nanoparticles (SiO NPs). We find that engineered SiO NPs have distinct Si-O two-dimensional (2D) isotopic fingerprints from naturally occurring SiO NPs, due probably to the Si and O isotope fractionation and use of isotopically different materials during the manufacturing process of engineered SiO NPs. A machine learning model is developed to classify the engineered and natural SiO NPs with a discrimination accuracy of 93.3%. Furthermore, the Si-O isotopic fingerprints are even able to partly identify the synthetic methods and manufacturers of engineered SiO NPs.

摘要

纳米技术风险评估领域的关键缺陷之一是缺乏能够对纳米颗粒(NP)进行溯源的技术。二氧化硅是产量最高的工程纳米材料,也以多种形式广泛存在于自然环境中。在此我们表明,固有同位素指纹提供了一种区分二氧化硅纳米颗粒(SiO NP)来源的可行方法。我们发现,工程化SiO NP具有与天然存在的SiO NP不同的Si-O二维(2D)同位素指纹,这可能是由于在工程化SiO NP的制造过程中Si和O同位素分馏以及使用了同位素不同的材料。开发了一种机器学习模型来对工程化和天然SiO NP进行分类,判别准确率为93.3%。此外,Si-O同位素指纹甚至能够部分识别工程化SiO NP的合成方法和制造商。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验