Suppr超能文献

热选择作为海洋生态物种形成的驱动力。

Thermal selection as a driver of marine ecological speciation.

机构信息

1 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg , Auckland Park 2006 , South Africa.

2 Molecular Ecology Lab, College of Science and Engineering, Flinders University , Adelaide 5001 , Australia.

出版信息

Proc Biol Sci. 2019 Feb 13;286(1896):20182023. doi: 10.1098/rspb.2018.2023.

Abstract

Intraspecific genetic structure in widely distributed marine species often mirrors the boundaries between temperature-defined bioregions. This suggests that the same thermal gradients that maintain distinct species assemblages also drive the evolution of new biodiversity. Ecological speciation scenarios are often invoked to explain such patterns, but the fact that adaptation is usually only identified when phylogenetic splits are already evident makes it impossible to rule out the alternative scenario of allopatric speciation with subsequent adaptation. We integrated large-scale genomic and environmental datasets along one of the world's best-defined marine thermal gradients (the South African coastline) to test the hypothesis that incipient ecological speciation is a result of divergence linked to the thermal environment. We identified temperature-associated gene regions in a coastal fish species that is spatially homogeneous throughout several temperature-defined biogeographic regions based on selectively neutral markers. Based on these gene regions, the species is divided into geographically distinct regional populations. Importantly, the ranges of these populations are delimited by the same ecological boundaries that define distinct infraspecific genetic lineages in co-distributed marine species, and biogeographic disjunctions in species assemblages. Our results indicate that temperature-mediated selection represents an early stage of marine ecological speciation in coastal regions that lack physical dispersal barriers.

摘要

广泛分布的海洋物种的种内遗传结构通常反映了温度定义的生物区之间的边界。这表明,维持不同物种组合的相同热梯度也推动了新生物多样性的进化。生态物种形成情景通常被用来解释这种模式,但事实上,适应通常只有在系统发育分裂已经明显时才被识别出来,这使得无法排除随后适应的异域物种形成的替代情景。我们整合了大规模的基因组和环境数据集,沿着世界上定义最好的海洋热梯度之一(南非海岸线)进行测试,以检验这样一种假设,即初期的生态物种形成是与热环境相关的分歧的结果。我们在一种沿海鱼类物种中识别出了与温度相关的基因区域,该物种在基于选择性中性标记的几个温度定义的生物地理区域中具有空间均匀性。基于这些基因区域,该物种被分为地理上不同的区域种群。重要的是,这些种群的范围由相同的生态边界限定,这些生态边界定义了分布广泛的海洋物种中的不同种内遗传谱系,以及物种组合中的生物地理分离。我们的结果表明,在缺乏物理扩散障碍的沿海地区,温度介导的选择代表了海洋生态物种形成的早期阶段。

相似文献

1
Thermal selection as a driver of marine ecological speciation.
Proc Biol Sci. 2019 Feb 13;286(1896):20182023. doi: 10.1098/rspb.2018.2023.
2
Genomic divergence and differential gene expression between crustacean ecotypes across a marine thermal gradient.
Mar Genomics. 2021 Aug;58:100847. doi: 10.1016/j.margen.2021.100847. Epub 2021 Feb 24.
5
Phylogeographic patterns and cryptic speciation across oceanographic barriers in South African intertidal fishes.
J Evol Biol. 2011 Nov;24(11):2505-19. doi: 10.1111/j.1420-9101.2011.02382.x. Epub 2011 Sep 12.
7
Ecological speciation in tropical reef fishes.
Proc Biol Sci. 2005 Mar 22;272(1563):573-9. doi: 10.1098/2004.3005.
8
Speciation along a depth gradient in a marine adaptive radiation.
Proc Biol Sci. 2011 Feb 22;278(1705):613-8. doi: 10.1098/rspb.2010.1127. Epub 2010 Sep 1.
10
Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans.
PLoS One. 2016 Feb 17;11(2):e0148847. doi: 10.1371/journal.pone.0148847. eCollection 2016.

引用本文的文献

2
Population genetic structure and ecological differentiation in the bryozoan genus across the Azores Archipelago (central North Atlantic).
Heliyon. 2024 Oct 1;10(19):e38765. doi: 10.1016/j.heliyon.2024.e38765. eCollection 2024 Oct 15.
3
Local adaptation with gene flow in a highly dispersive shark.
Evol Appl. 2023 Dec 20;17(1):e13628. doi: 10.1111/eva.13628. eCollection 2024 Jan.
5
Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south.
iScience. 2023 Aug 28;26(10):107742. doi: 10.1016/j.isci.2023.107742. eCollection 2023 Oct 20.
10
The sardine run in southeastern Africa is a mass migration into an ecological trap.
Sci Adv. 2021 Sep 17;7(38):eabf4514. doi: 10.1126/sciadv.abf4514. Epub 2021 Sep 15.

本文引用的文献

2
Thermal limits to the geographic distributions of shallow-water marine species.
Nat Ecol Evol. 2017 Dec;1(12):1846-1852. doi: 10.1038/s41559-017-0353-x. Epub 2017 Oct 23.
3
Comparative phylogeography of the ocean planet.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):7962-9. doi: 10.1073/pnas.1602404113.
5
Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores.
PLoS One. 2015 Jun 26;10(6):e0128124. doi: 10.1371/journal.pone.0128124. eCollection 2015.
6
The environmental genomics of metazoan thermal adaptation.
Heredity (Edinb). 2015 May;114(5):502-14. doi: 10.1038/hdy.2014.119. Epub 2015 Mar 4.
7
BEAST 2: a software platform for Bayesian evolutionary analysis.
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537. doi: 10.1371/journal.pcbi.1003537. eCollection 2014 Apr.
8
fastSTRUCTURE: variational inference of population structure in large SNP data sets.
Genetics. 2014 Jun;197(2):573-89. doi: 10.1534/genetics.114.164350. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验