Bowen Brian W, Gaither Michelle R, DiBattista Joseph D, Iacchei Matthew, Andrews Kimberly R, Grant W Stewart, Toonen Robert J, Briggs John C
Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744;
School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom;
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):7962-9. doi: 10.1073/pnas.1602404113.
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.
要理解地理、海洋学和气候最终如何塑造了海洋生物多样性,需要对多个分类群的遗传多样性分布进行比对。在此,我们在由分类学、特有性和物种组成所定义的生物地理区域背景下,研究海洋中的系统发育地理分区。用于定义生物地理区域的分类学身份通常伴随着姐妹物种之间的诊断性遗传差异,这表明生物地理学和系统发育地理学之间存在种间一致性。在单个物种分布于两个或更多生物地理区域的情况下,基因型频率的变化往往与生物地理边界一致,这提供了生物地理学和系统发育地理学之间的种内一致性。在此,我们提供了来自以下方面的比较系统发育地理学实例:(i)拥有最高海洋生物多样性的热带海域;(ii)生产力高但海岸线多变的温带海域;(iii)洄游性海洋动物群;以及(iv)作为地球上最丰富真核生物的浮游生物。热带和温带地区都显示出冰川周期的影响,前者主要通过海平面变化,后者则通过沿海栖息地破坏。生物地理学和系统发育地理学之间的总体一致性表明,各区域间观察到的种群水平遗传差异是物种间宏观进化差异的起点。然而,区域间的隔离并不能解释所有的海洋生物多样性;其余部分则通过其他途径产生,如生态物种形成以及区域内和生物多样性热点地区的邻域(半隔离)分化。