Suppr超能文献

多基地多普勒雷达对未知检测概率目标的多目标跟踪。

Tracking Multiple Targets from Multistatic Doppler Radar with Unknown Probability of Detection.

机构信息

School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia 2 School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia.

Current address: ThaiNguyen University of Technology, ThaiNguyen University, ThaiNguyen 251810, Vietnam..

出版信息

Sensors (Basel). 2019 Apr 8;19(7):1672. doi: 10.3390/s19071672.

Abstract

The measurements from multistatic radar systems are typically subjected to complicated data association, noise corruption, missed detection, and false alarms. Moreover, most of the current multistatic Doppler radar-based approaches in multitarget tracking are based on the assumption of known detection probability. This assumption can lead to biased or even complete corruption of estimation results. This paper proposes a method for tracking multiple targets from multistatic Doppler radar with unknown detection probability. A closed form labeled multitarget Bayes filter was used to track unknown and time-varying targets with unknown probability of detection in the presence of clutter, misdetection, and association uncertainty. The efficiency of the proposed algorithm was illustrated via numerical simulation examples.

摘要

多基地雷达系统的测量结果通常需要进行复杂的数据关联、噪声干扰、漏检和虚警处理。此外,目前大多数基于多基地多普勒雷达的多目标跟踪方法都基于检测概率已知的假设。这种假设可能会导致估计结果出现偏差,甚至完全失效。本文提出了一种用于跟踪多基地多普勒雷达中具有未知检测概率的多个目标的方法。使用闭式标记多目标贝叶斯滤波器来跟踪在杂波、漏检和关联不确定性存在的情况下具有未知检测概率的未知和时变目标。通过数值仿真示例说明了所提出算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba2/6479563/6e8db2835a54/sensors-19-01672-g001.jpg

相似文献

本文引用的文献

1
"Statistics 103" for Multitarget Tracking.多目标跟踪的“统计学 103”。
Sensors (Basel). 2019 Jan 8;19(1):202. doi: 10.3390/s19010202.
2
Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels.线性硬度梯度水凝胶上的干细胞迁移和力学转导。
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5647-5652. doi: 10.1073/pnas.1618239114. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验