Suppr超能文献

大数据:科学方法的终结?

Big data: the end of the scientific method?

机构信息

1 Center for Life Nano Sciences at La Sapienza , Istituto Italiano di Tecnologia , viale R. Margherita , 265 , 00161 , Roma , Italy.

2 Institute for Applied Computational Science , J. Paulson School of Engineering and Applied Sciences , Harvard University , 29 Oxford Street , Cambridge , USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180145. doi: 10.1098/rsta.2018.0145.

Abstract

For it is not the abundance of knowledge, but the interior feeling and taste of things, which is accustomed to satisfy the desire of the soul. (Saint Ignatius of Loyola). We argue that the boldest claims of big data (BD) are in need of revision and toning-down, in view of a few basic lessons learned from the science of complex systems. We point out that, once the most extravagant claims of BD are properly discarded, a synergistic merging of BD with big theory offers considerable potential to spawn a new scientific paradigm capable of overcoming some of the major barriers confronted by the modern scientific method originating with Galileo. These obstacles are due to the presence of nonlinearity, non-locality and hyperdimensions which one encounters frequently in multi-scale modelling of complex systems. This article is part of the theme issue 'Multiscale modelling, simulation and computing: from the desktop to the exascale'.

摘要

因为习惯满足灵魂欲望的,不是知识的丰富,而是对事物的内在感觉和品味。(圣依纳爵·罗耀拉)。我们认为,鉴于从复杂系统科学中吸取的一些基本经验教训,大数据(BD)最激进的主张需要加以修正和淡化。我们指出,一旦正确地摒弃了 BD 的最夸大的主张,BD 与大理论的协同融合就有可能产生一个新的科学范式,克服现代科学方法(源于伽利略)所面临的一些主要障碍。这些障碍是由于非线性、非局部性和高维性的存在,在复杂系统的多尺度建模中经常会遇到这些问题。本文是“多尺度建模、模拟和计算:从桌面到 exascale”主题的一部分。

相似文献

1
Big data: the end of the scientific method?
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180145. doi: 10.1098/rsta.2018.0145.
2
Multiscale modelling, simulation and computing: from the desktop to the exascale.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180355. doi: 10.1098/rsta.2018.0355.
3
Multiscale computing for science and engineering in the era of exascale performance.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180144. doi: 10.1098/rsta.2018.0144.
4
Mastering the scales: a survey on the benefits of multiscale computing software.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180147. doi: 10.1098/rsta.2018.0147.
5
Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180148. doi: 10.1098/rsta.2018.0148.
6
Mesoscale modelling of soft flowing crystals.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180149. doi: 10.1098/rsta.2018.0149.
7
Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180154. doi: 10.1098/rsta.2018.0154.
8
Application of the extreme scaling computing pattern on multiscale fusion plasma modelling.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180152. doi: 10.1098/rsta.2018.0152.
9
Predicting queue wait time probabilities for multi-scale computing.
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180151. doi: 10.1098/rsta.2018.0151.
10
Big data need big theory too.
Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080). doi: 10.1098/rsta.2016.0153.

引用本文的文献

2
Equilibrium and Nonequilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free Energy Calculations.
J Chem Theory Comput. 2025 Jan 14;21(1):440-462. doi: 10.1021/acs.jctc.4c01389. Epub 2024 Dec 16.
3
When we talk about Big Data, What do we really mean? Toward a more precise definition of Big Data.
Front Big Data. 2024 Sep 10;7:1441869. doi: 10.3389/fdata.2024.1441869. eCollection 2024.
4
Artificial Intelligence Must Be Made More Scientific.
J Chem Inf Model. 2024 Aug 12;64(15):5739-5741. doi: 10.1021/acs.jcim.4c01091. Epub 2024 Jul 27.
5
How is Big Data reshaping preclinical aging research?
Lab Anim (NY). 2023 Dec;52(12):289-314. doi: 10.1038/s41684-023-01286-y. Epub 2023 Nov 28.
6
Ensemble-Based Approaches Ensure Reliability and Reproducibility.
J Chem Inf Model. 2023 Nov 27;63(22):6959-6963. doi: 10.1021/acs.jcim.3c01654. Epub 2023 Nov 15.
7
Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review.
PLOS Digit Health. 2023 Oct 11;2(10):e0000347. doi: 10.1371/journal.pdig.0000347. eCollection 2023 Oct.
8
Generative Models as an Emerging Paradigm in the Chemical Sciences.
J Am Chem Soc. 2023 Apr 26;145(16):8736-8750. doi: 10.1021/jacs.2c13467. Epub 2023 Apr 13.
9
Embracing complexity in sepsis.
Crit Care. 2023 Mar 11;27(1):102. doi: 10.1186/s13054-023-04374-0.
10
Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols.
J Chem Theory Comput. 2022 Apr 12;18(4):2687-2702. doi: 10.1021/acs.jctc.1c01288. Epub 2022 Mar 16.

本文引用的文献

1
Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.
Phys Rev Lett. 2018 Jan 12;120(2):024102. doi: 10.1103/PhysRevLett.120.024102.
2
Quantum machine learning.
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.
3
The Role of Multiscale Protein Dynamics in Antigen Presentation and T Lymphocyte Recognition.
Front Immunol. 2017 Jul 10;8:797. doi: 10.3389/fimmu.2017.00797. eCollection 2017.
4
Big data need big theory too.
Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080). doi: 10.1098/rsta.2016.0153.
5
A meeting with Enrico Fermi.
Nature. 2004 Jan 22;427(6972):297. doi: 10.1038/427297a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验