Suppr超能文献

大数据如何重塑临床前衰老研究?

How is Big Data reshaping preclinical aging research?

机构信息

Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

出版信息

Lab Anim (NY). 2023 Dec;52(12):289-314. doi: 10.1038/s41684-023-01286-y. Epub 2023 Nov 28.

Abstract

The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.

摘要

过去 30 年来,科学技术呈指数级发展,有利于全面描述具有多变量性质的衰老过程,从而促使临床前衰老研究迎来大数据时代。从分子组学到机体水平的深度表型分析,大数据需要大量的计算资源来存储和分析,以及新的分析工具和概念框架,以获得新的见解,从而实现发现。系统生物学作为一种范例,利用大数据来获取有见地的信息,从而更好地理解生物体,将生物体可视化为在不同时空尺度上相互作用的分子、细胞、组织和器官的多层次网络。在这个框架中,衰老、健康和疾病是从不断演变的动态复杂系统中涌现出来的状态,例如,品系、性别和喂养时间等背景因素对于定义生物体的生物学轨迹变得至关重要。通过生物信息学和人工智能,系统生物学方法在我们对衰老生物学的潜在机制的理解方面取得了显著进展,并有助于在动物模型中进行创造性的实验设计。未来更深入的知识获取将取决于从生物体不同时空尺度充分整合信息的能力,这可能需要采用复杂系统领域的理论和方法。本文综述了临床前研究中的最新方法,重点介绍了啮齿动物模型,这些方法在利用大数据理解基本衰老生物学及其全部转化潜力方面带来了概念和/或技术上的进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验