Suppr超能文献

聚变能源的发展能否加快?会议录介绍。

Can the development of fusion energy be accelerated? An introduction to the proceedings.

机构信息

Tokamak Energy Ltd , 173 Brook Drive, Milton Park OX14 4SD , UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170446. doi: 10.1098/rsta.2017.0446.

Abstract

This introduction reviews the unique opportunity of fusion power to deliver safe, carbon-free, abundant, base-load power. The differences from fission power are considered: especially why a Chernobyl, Three Mile Island or Fukushima accident could not happen with a fusion reactor. The Lawson triple product is introduced, along with tokamaks, or magnetic bottles, whose ability to approach close to the fusion burn conditions has so far put them above their competitors. Our last fusion power Discussion Meeting was organized by Derek Robinson FRS in 1998, and the progress since then is reviewed. Tokamaks are introduced, and the advantages of spherical tokamaks are listed along with the special engineering challenges that they introduce. Their key advantage is high plasma pressure, and the important β parameter indicating the efficiency of the magnetic field use is introduced. High-temperature superconductors are described along with the opportunities they allow for higher magnetic fields at higher current densities and more modest cryogenic temperatures. The question posed is whether the two developments of spherical tokamaks and high-temperature superconductors could lead to more economical fusion power plants and faster development than the current route through ITER and DEMO. This article is part of a discussion meeting issue 'Fusion energy using tokamaks: can development be accelerated?'.

摘要

这篇介绍回顾了聚变能提供安全、无碳、丰富、基荷电力的独特机会。文中考虑了与裂变能的区别:特别是为什么聚变反应堆不可能发生切尔诺贝利、三里岛或福岛事故。介绍了劳森三乘积,以及托卡马克,或磁瓶,它们接近聚变燃烧条件的能力使它们优于竞争对手。我们上次的聚变能讨论会议是由 Derek Robinson FRS 在 1998 年组织的,回顾了自那时以来的进展。介绍了托卡马克,列出了球形托卡马克的优势以及它们带来的特殊工程挑战。它们的主要优势是等离子体压力高,以及表示磁场利用效率的重要β参数。介绍了高温超导,以及它们在更高电流密度和更适度的低温条件下允许更高磁场的机会。提出的问题是,球形托卡马克和高温超导的这两个发展是否可能导致比通过 ITER 和 DEMO 目前的路线更经济的聚变发电厂和更快的发展。本文是“使用托卡马克的聚变能:能否加速发展?”讨论会议的一部分。

相似文献

1
Can the development of fusion energy be accelerated? An introduction to the proceedings.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170446. doi: 10.1098/rsta.2017.0446.
2
Small, modular and economically attractive fusion enabled by high temperature superconductors.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20180354. doi: 10.1098/rsta.2018.0354.
3
Smaller and quicker with spherical tokamaks and high-temperature superconductors.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170438. doi: 10.1098/rsta.2017.0438.
4
Towards a compact spherical tokamak fusion pilot plant.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170439. doi: 10.1098/rsta.2017.0439.
5
Alternatives to tokamaks: a faster-better-cheaper route to fusion energy?
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170431. doi: 10.1098/rsta.2017.0431.
6
The European roadmap towards fusion electricity.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170432. doi: 10.1098/rsta.2017.0432.
7
An economical viable tokamak fusion reactor based on the ITER experience.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170433. doi: 10.1098/rsta.2017.0433.
8
Compact steady-state tokamak performance dependence on magnet and core physics limits.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170440. doi: 10.1098/rsta.2017.0440.
9
The impact of plasma physics on the timescale to a tokamak fusion power plant.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170435. doi: 10.1098/rsta.2017.0435.
10
Economic aspects of the deployment of fusion energy: the valley of death and the innovation cycle.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170444. doi: 10.1098/rsta.2017.0444.

本文引用的文献

1
Economic aspects of the deployment of fusion energy: the valley of death and the innovation cycle.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170444. doi: 10.1098/rsta.2017.0444.
2
Small, modular and economically attractive fusion enabled by high temperature superconductors.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20180354. doi: 10.1098/rsta.2018.0354.
3
Shielding materials in the compact spherical tokamak.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170443. doi: 10.1098/rsta.2017.0443.
4
Engineering challenges for accelerated fusion demonstrators.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170442. doi: 10.1098/rsta.2017.0442.
5
Towards a compact spherical tokamak fusion pilot plant.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170439. doi: 10.1098/rsta.2017.0439.
6
Smaller and quicker with spherical tokamaks and high-temperature superconductors.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170438. doi: 10.1098/rsta.2017.0438.
7
On the size of tokamak fusion power plants.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170437. doi: 10.1098/rsta.2017.0437.
8
UKAEA capabilities to address the challenges on the path to delivering fusion power.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170436. doi: 10.1098/rsta.2017.0436.
9
The impact of plasma physics on the timescale to a tokamak fusion power plant.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170435. doi: 10.1098/rsta.2017.0435.
10
An economical viable tokamak fusion reactor based on the ITER experience.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170433. doi: 10.1098/rsta.2017.0433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验