Lin Ruoqian, Hu Enyuan, Liu Mingjie, Wang Yi, Cheng Hao, Wu Jinpeng, Zheng Jin-Cheng, Wu Qin, Bak Seongmin, Tong Xiao, Zhang Rui, Yang Wanli, Persson Kristin A, Yu Xiqian, Yang Xiao-Qing, Xin Huolin L
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Nat Commun. 2019 Apr 9;10(1):1650. doi: 10.1038/s41467-019-09248-0.
Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, LiRuMnO. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
尽管研究脱锂阴极材料的不稳定性很重要,但由于化学和结构演变的复杂性,仍然难以确定富锂阴极材料的降解机制。在此,我们使用最先进的电子显微镜工具,结合同步加速器X射线技术和第一性原理计算,来研究一种含4d元素的化合物LiRuMnO。我们惊讶地发现,循环后,钌以金属纳米团簇的形式在重构表面偏析出来。我们的计算表明,钌金属的意外偏析是由于其在缺氧表面的热力学不溶性。这种不溶性会破坏重构表面,这就解释了该材料中多孔结构的形成。这项工作揭示了研究阴极材料上重构膜的热力学稳定性的重要性,并为选择富锂以及化学计量比的层状化合物中的锰替代元素以稳定阴极表面提供了理论指导。