Departments of Materials and Chemistry, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, UK.
Nat Chem. 2016 Jul;8(7):684-91. doi: 10.1038/nchem.2471. Epub 2016 Mar 21.
During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.
在锂离子电池通过锂离子的脱嵌来进行充电和放电过程中,通过过渡金属的氧化还原化学来保持电中性,这限制了可以存储的电荷。然而,对于一些过渡金属氧化物,这个限制可以被打破,并且已经提出了氧损失和/或氧氧化还原反应来解释这种现象。我们提出了(18)O 标记的 Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 的原位质谱研究,该研究表明,在给 Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 阴极充电时,氧从晶格中被提取出来,尽管我们没有检测到 O2 的释放。结合软 X 射线吸收光谱、共振非弹性 X 射线散射光谱、X 射线吸收近边结构光谱和拉曼光谱表明,除了氧损失之外,Li(+)的去除由 Mn(4+)和 Li(+)离子配位的 O 原子上形成的局部电子空穴来补偿电荷,这有助于促进氧的本地化,而不是形成真正的 O2(2-)(过氧化物,O-O~1.45 Å)物种。通过氧去除和 O 原子上形成电子空穴来补偿的电荷量被估计,并且在描述的情况下,后者占主导地位。