Suppr超能文献

迭代筛选方法可用于分离具有改进性能的菌株,用于基于 FACS 的筛选和增加 L-DOPA 的产量。

Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production.

机构信息

University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.

Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.

出版信息

Sci Rep. 2019 Apr 9;9(1):5815. doi: 10.1038/s41598-019-41759-0.

Abstract

Optimizing microbial hosts for the large-scale production of valuable metabolites often requires multiple mutations and modifications to the host's genome. We describe a three-round screen for increased L-DOPA production in S. cerevisiae using FACS enrichment of an enzyme-coupled biosensor for L-DOPA. Multiple rounds of screening were enabled by a single build of a barcoded in vitro transposon-mediated disruption library. New background strains for screening were built for each iteration using results from previous iterations. The same in vitro transposon-mediated disruption library was integrated by homologous recombination into new background strains in each round of screening. Compared with creating new transposon insertions in each round, this method takes less time and saves the cost of additional sequencing to characterize transposon insertion sites. In the first two rounds of screening, we identified deletions that improved biosensor compartmentalization and, consequently, improved our ability to screen for L-DOPA production. In a final round, we discovered that deletion of heme oxygenase (HMX1) increases total heme concentration and increases L-DOPA production, using dopamine measurement as a proxy. We further demonstrated that deleting HMX1 may represent a general strategy for P450 function improvement by improving activity of a second P450 enzyme, BM3, which performs a distinct reaction.

摘要

为了大规模生产有价值的代谢产物,通常需要对微生物宿主进行多次突变和修饰。我们描述了一种使用 L-DOPA 酶偶联生物传感器通过 FACS 富集来提高酿酒酵母中 L-DOPA 产量的三轮筛选方法。通过构建单个条形码体外转座子介导的破坏文库,实现了多轮筛选。每次筛选迭代都使用前一轮的结果构建新的筛选背景菌株。在每轮筛选中,相同的体外转座子介导的破坏文库通过同源重组整合到新的背景菌株中。与在每轮中创建新的转座子插入相比,这种方法节省了时间和额外测序的成本,用于表征转座子插入位点。在前两轮筛选中,我们发现了缺失突变,这些缺失突变改善了生物传感器的区室化,从而提高了我们筛选 L-DOPA 产量的能力。在最后一轮筛选中,我们发现删除血红素加氧酶 (HMX1) 可以增加总血红素浓度,并增加 L-DOPA 的产量,使用多巴胺测量作为替代物。我们进一步证明,删除 HMX1 可能代表了通过改善第二种 P450 酶 BM3 的活性来提高 P450 功能的一般策略,BM3 执行不同的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1daa/6456618/7a910154369b/41598_2019_41759_Fig2_HTML.jpg

相似文献

2
Multipurpose transposon insertion libraries for large-scale analysis of gene function in yeast.
Methods Mol Biol. 2008;416:117-29. doi: 10.1007/978-1-59745-321-9_8.
3
Sorting for secreted molecule production using a biosensor-in-microdroplet approach.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106818118.
4
An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
Nat Chem Biol. 2015 Jul;11(7):465-71. doi: 10.1038/nchembio.1816. Epub 2015 May 18.
5
Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production.
FEMS Yeast Res. 2017 Jan;17(1). doi: 10.1093/femsyr/fow104. Epub 2016 Dec 11.
6
High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in .
ACS Synth Biol. 2021 May 21;10(5):1077-1086. doi: 10.1021/acssynbio.0c00600. Epub 2021 May 12.
7
Using Yeast Transposon-Insertion Libraries for Phenotypic Screening and Protein Localization.
Cold Spring Harb Protoc. 2016 Jun 1;2016(6):2016/6/pdb.prot085217. doi: 10.1101/pdb.prot085217.
9
Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories.
ACS Synth Biol. 2020 Jul 17;9(7):1736-1752. doi: 10.1021/acssynbio.0c00123. Epub 2020 Jun 16.

引用本文的文献

2
Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets.
ACS Synth Biol. 2024 Jan 19;13(1):168-182. doi: 10.1021/acssynbio.3c00396. Epub 2023 Dec 23.
3
CRI-SPA: a high-throughput method for systematic genetic editing of yeast libraries.
Nucleic Acids Res. 2023 Sep 22;51(17):e91. doi: 10.1093/nar/gkad656.
4
Improved Functional Expression of Cytochrome P450s in Through Screening a cDNA Library From .
Front Bioeng Biotechnol. 2021 Dec 9;9:764851. doi: 10.3389/fbioe.2021.764851. eCollection 2021.
5
De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories.
Nat Commun. 2021 Oct 19;12(1):6085. doi: 10.1038/s41467-021-26361-1.
6
Sorting for secreted molecule production using a biosensor-in-microdroplet approach.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106818118.
7
Effective use of biosensors for high-throughput library screening for metabolite production.
J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10). doi: 10.1093/jimb/kuab049.
9
Transportome-wide engineering of Saccharomyces cerevisiae.
Metab Eng. 2021 Mar;64:52-63. doi: 10.1016/j.ymben.2021.01.007. Epub 2021 Jan 16.
10
Structural and Biosynthetic Analysis of the Fabrubactins, Unusual Siderophores from Strain C58.
ACS Chem Biol. 2021 Jan 15;16(1):125-135. doi: 10.1021/acschembio.0c00809. Epub 2020 Dec 29.

本文引用的文献

1
Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
Nat Biotechnol. 2018 Jul;36(6):505-508. doi: 10.1038/nbt.4132. Epub 2018 May 7.
2
Enzymatic construction of highly strained carbocycles.
Science. 2018 Apr 6;360(6384):71-75. doi: 10.1126/science.aar4239.
3
Bioproduction of a betalain color palette in Saccharomyces cerevisiae.
Metab Eng. 2018 Jan;45:180-188. doi: 10.1016/j.ymben.2017.12.008. Epub 2017 Dec 13.
4
Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis.
Protoplasma. 2016 Sep;253(5):1197-209. doi: 10.1007/s00709-015-0884-4. Epub 2015 Sep 12.
5
Complete biosynthesis of opioids in yeast.
Science. 2015 Sep 4;349(6252):1095-100. doi: 10.1126/science.aac9373. Epub 2015 Aug 13.
6
De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
Metab Eng. 2015 Sep;31:74-83. doi: 10.1016/j.ymben.2015.06.010. Epub 2015 Jul 10.
7
Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
Microb Cell Fact. 2015 May 28;14:73. doi: 10.1186/s12934-015-0252-2.
8
An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
Nat Chem Biol. 2015 Jul;11(7):465-71. doi: 10.1038/nchembio.1816. Epub 2015 May 18.
10
A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.
ACS Synth Biol. 2015 Sep 18;4(9):975-86. doi: 10.1021/sb500366v. Epub 2015 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验