Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4068, Australia.
Heredity (Edinb). 2019 Sep;123(3):407-418. doi: 10.1038/s41437-019-0219-x. Epub 2019 Apr 9.
The deleterious mutation model proposes that quantitative trait variation should be dominated by rare, partially recessive, deleterious mutations. Following artificial selection on a focal trait, the ratio of the difference in inbreeding effects between control and selected populations (ΔB), to the difference in trait means caused by directional selection (ΔM), can inform the extent to which deleterious mutations cause quantitative trait variation. Here, we apply the ΔB/ΔM ratio test to two quantitative traits (male mating success and body size) in Drosophila melanogaster. For both traits, ΔB/ΔM ratios suggested that intermediate-frequency alleles, rather than rare, partially recessive alleles (i.e. deleterious mutations), caused quantitative trait variation. We discuss these results in relation to viability data, exploring how differences between regimens in segregating (measured through inbreeding) and fixed (measured through population crosses) mutational load could affect the ratio test. Finally, we present simulations that test the statistical power of the ratio test, providing guidelines for future research.
有害突变模型提出,数量性状变异应该由罕见的、部分隐性的、有害突变主导。在对焦点性状进行人工选择后,控制种群和选择种群之间的近亲繁殖效应差异(ΔB)与由定向选择引起的性状均值差异(ΔM)的比值,可以说明有害突变在多大程度上导致了数量性状变异。在这里,我们将 ΔB/ΔM 比值检验应用于黑腹果蝇的两个数量性状(雄性交配成功率和体型)。对于这两个性状,ΔB/ΔM 比值表明,是中频等位基因,而不是罕见的、部分隐性的等位基因(即有害突变)导致了数量性状变异。我们将这些结果与生存力数据进行了讨论,探讨了不同方案中分离(通过近亲繁殖测量)和固定(通过种群杂交测量)的突变负荷之间的差异如何影响比值检验。最后,我们进行了模拟检验,以测试比值检验的统计功效,为未来的研究提供了指导。