Suppr超能文献

使用观察水平的随机效应模型来模拟生态学和进化中的计数数据的过离散。

Using observation-level random effects to model overdispersion in count data in ecology and evolution.

机构信息

Institute of Zoology, Zoological Society of London , London , UK.

出版信息

PeerJ. 2014 Oct 9;2:e616. doi: 10.7717/peerj.616. eCollection 2014.

Abstract

Overdispersion is common in models of count data in ecology and evolutionary biology, and can occur due to missing covariates, non-independent (aggregated) data, or an excess frequency of zeroes (zero-inflation). Accounting for overdispersion in such models is vital, as failing to do so can lead to biased parameter estimates, and false conclusions regarding hypotheses of interest. Observation-level random effects (OLRE), where each data point receives a unique level of a random effect that models the extra-Poisson variation present in the data, are commonly employed to cope with overdispersion in count data. However studies investigating the efficacy of observation-level random effects as a means to deal with overdispersion are scarce. Here I use simulations to show that in cases where overdispersion is caused by random extra-Poisson noise, or aggregation in the count data, observation-level random effects yield more accurate parameter estimates compared to when overdispersion is simply ignored. Conversely, OLRE fail to reduce bias in zero-inflated data, and in some cases increase bias at high levels of overdispersion. There was a positive relationship between the magnitude of overdispersion and the degree of bias in parameter estimates. Critically, the simulations reveal that failing to account for overdispersion in mixed models can erroneously inflate measures of explained variance (r (2)), which may lead to researchers overestimating the predictive power of variables of interest. This work suggests use of observation-level random effects provides a simple and robust means to account for overdispersion in count data, but also that their ability to minimise bias is not uniform across all types of overdispersion and must be applied judiciously.

摘要

过度离散在生态学和进化生物学中的计数数据模型中很常见,可能是由于缺失协变量、非独立(聚合)数据或零值的过度频率(零膨胀)引起的。在这些模型中考虑过度离散是至关重要的,因为不这样做可能会导致参数估计有偏差,并且对感兴趣的假设得出错误的结论。观察水平的随机效应(OLRE),其中每个数据点都收到一个独特的随机效应水平,该水平模型了数据中存在的额外泊松变异,通常用于处理计数数据中的过度离散。然而,研究观察水平的随机效应作为处理过度离散的一种手段的效果的研究很少。在这里,我使用模拟来表明,在过度离散是由随机额外泊松噪声或计数数据中的聚集引起的情况下,与简单忽略过度离散相比,观察水平的随机效应产生更准确的参数估计。相反,OLRE 无法减少零膨胀数据中的偏差,并且在某些情况下,在过度离散程度较高时会增加偏差。过度离散的程度与参数估计中的偏差程度之间存在正相关关系。至关重要的是,模拟结果表明,在混合模型中不考虑过度离散会错误地夸大解释方差的度量(r(2)),这可能导致研究人员高估感兴趣变量的预测能力。这项工作表明,观察水平的随机效应提供了一种简单而稳健的方法来处理计数数据中的过度离散,但它们最小化偏差的能力并不是所有类型的过度离散都适用,必须谨慎应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c48c/4194460/b9cb1a449f74/peerj-02-616-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验