State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4455-4465. doi: 10.1007/s00253-019-09788-x. Epub 2019 Apr 9.
In this study, stress tolerance devices consisting of heat shock protein (HSP) genes from thermophiles Geobacillus and Parageobacillus were introduced into riboflavin-producing strain Bacillus subtilis 446 to improve its stress tolerance and riboflavin production. The 12 HSP homologs were selected from 28 Geobacillus and Parageobacillus genomes according to their sequence clustering and phylogenetically analysis which represents the diversity of HSPs from thermophilic bacillus. The 12 HSP genes and 2 combinations of them (PtdnaK-PtdnaJ-PtgrpE and PtgroeL-PtgroeS) were heterologously expressed in B. subtilis 446 under the control of a strong constitutive promoter P43. Most of the 14 engineered strains showed increased cell density at 44 to 48 °C and less cell death at 50 °C compared with the control strains. Among them, strains B.s446-HSP20-3, B.s446-HSP20-2, and B.s446-PtDnaK-PtDnaJ-PtGrpE increased their cell densities over 25% at 44 to 48 °C. They also showed 5-, 4-, and 4-fold improved cell survivals after the 10-h heat shock treatment at 50 °C, respectively. These three strains also showed reduced cell death rates under osmotic stress of 10% NaCl, indicating that the introduction of HSPs improved not only the heat tolerance of B. subtilis 446 but also its osmotic tolerance. Fermentation of these three strains at higher temperatures of 39 and 43 °C showed 23-66% improved riboflavin titers, as well as 24-h shortened fermentation period. These results indicated that implanting HSPs from thermophiles to B. subtilis 446 would be an efficient approach to improve its stress tolerance and riboflavin production.
在这项研究中,引入了来自嗜热菌 Geobacillus 和 Parageobacillus 的热休克蛋白(HSP)基因的应激耐受装置,以提高核黄素生产菌株枯草芽孢杆菌 446 的应激耐受能力和核黄素产量。根据序列聚类和系统发育分析,从 28 个 Geobacillus 和 Parageobacillus 基因组中选择了 12 个 HSP 同源物,这代表了来自嗜热芽孢杆菌的 HSP 的多样性。在强组成型启动子 P43 的控制下,将 12 个 HSP 基因和它们的 2 个组合(PtdnaK-PtdnaJ-PtgrpE 和 PtgroeL-PtgroeS)异源表达在枯草芽孢杆菌 446 中。与对照菌株相比,大多数 14 个工程菌株在 44 至 48°C 时表现出更高的细胞密度,在 50°C 时细胞死亡率更低。其中,菌株 B.s446-HSP20-3、B.s446-HSP20-2 和 B.s446-PtDnaK-PtDnaJ-PtGrpE 在 44 至 48°C 时的细胞密度提高了 25%以上。它们在 50°C 下 10 小时热休克处理后,细胞存活率分别提高了 5 倍、4 倍和 4 倍。这三种菌株在 10%NaCl 的渗透压胁迫下也表现出较低的细胞死亡率,表明 HSP 的引入不仅提高了枯草芽孢杆菌 446 的耐热性,还提高了其耐渗透压性。在较高温度 39°C 和 43°C 下发酵这三种菌株,核黄素产量提高了 23%至 66%,发酵周期缩短了 24 小时。这些结果表明,将嗜热菌的 HSP 植入枯草芽孢杆菌 446 是提高其应激耐受能力和核黄素产量的有效方法。