Liu Teng, Li Peng, Yao Na, Kong Taige, Cheng Gongzhen, Chen Shengli, Luo Wei
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
Adv Mater. 2019 May;31(21):e1806672. doi: 10.1002/adma.201806672. Epub 2019 Apr 10.
Direct use of metal-organic frameworks (MOFs) with robust pore structures, large surface areas, and high density of coordinatively unsaturated metal sites as electrochemical active materials is highly desirable (rather than using as templates and/or precursors for high-temperature calcination), but this is practically hindered by the poor conductivity and low accessibility of active sites in the bulk form. Herein, a universal vapor-phase method is reported to grow well-aligned MOFs on conductive carbon cloth (CC) by using metal hydroxyl fluorides with diverse morphologies as self-sacrificial templates. Specifically, by further partially on-site generating active Co S species from Co ions in the echinops-like Co-based MOF (EC-MOF) through a controlled vulcanization approach, the resulting Co S /EC-MOF hybrid exhibits much enhanced electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of 84 and 226 mV required to reach a current density of 10 mA cm , respectively. Density functional theory (DFT) calculations and experimental results reveal that the electron transfer between Co S species and EC-MOF can decrease the electron density of the Co d-orbital, resulting in more electrocatalytically optimized adsorption properties for Co. This study will open up a new avenue for designing highly ordered MOF-based surface active materials for various electrochemical energy applications.
直接将具有坚固孔结构、大表面积和高密度配位不饱和金属位点的金属有机框架(MOF)用作电化学活性材料是非常可取的(而不是用作高温煅烧的模板和/或前驱体),但实际上,块状形式的MOF由于导电性差和活性位点的可及性低而受到阻碍。在此,报道了一种通用的气相方法,通过使用具有不同形态的金属羟基氟化物作为自牺牲模板,在导电碳布(CC)上生长排列良好的MOF。具体而言,通过可控硫化方法在类似刺头状的钴基金属有机框架(EC-MOF)中由钴离子进一步部分原位生成活性CoS物种,所得的CoS/EC-MOF杂化物对析氢反应(HER)和析氧反应(OER)表现出大大增强的电催化性能,分别达到10 mA cm电流密度所需的过电位为84和226 mV。密度泛函理论(DFT)计算和实验结果表明,CoS物种与EC-MOF之间的电子转移可以降低Co d轨道的电子密度,从而使Co具有更优化的电催化吸附性能。这项研究将为设计用于各种电化学能量应用的高度有序的基于MOF的表面活性材料开辟一条新途径。