Volen National Center for Complex Systems, Brandeis University , Waltham, Massachusetts.
Department of Biology, Brandeis University , Waltham, Massachusetts.
J Neurophysiol. 2019 Jul 1;122(1):66-80. doi: 10.1152/jn.00534.2018. Epub 2019 Apr 10.
Our brains must maintain a representation of the world over a period of time much longer than the typical lifetime of the biological components producing that representation. For example, recent research suggests that dendritic spines in the adult mouse hippocampus are transient with an average lifetime of ~10 days. If this is true, and if turnover is equally likely for all spines, ~95% of excitatory synapses onto a particular neuron will turn over within 30 days; however, a neuron's receptive field can be relatively stable over this period. Here, we use computational modeling to ask how memories can persist in neural circuits such as the hippocampus and visual cortex in the face of synapse turnover. We demonstrate that Hebbian plasticity during replay of presynaptic activity patterns can integrate newly formed synapses into pre-existing memories. Furthermore, we find that Hebbian plasticity during replay is sufficient to stabilize the receptive fields of hippocampal place cells in a model of the grid-cell-to-place-cell transformation in CA1 and of orientation-selective cells in a model of the center-surround-to-simple-cell transformation in V1. Together, these data suggest that a simple plasticity rule, correlative Hebbian plasticity of synaptic strengths, is sufficient to preserve neural representations in the face of synapse turnover, even in the absence of activity-dependent structural plasticity. Recent research suggests that synapses turn over rapidly in some brain structures; however, memories seem to persist for much longer. We show that Hebbian plasticity of synaptic strengths during reactivation events can preserve memory in computational models of hippocampal and cortical networks despite turnover of all synapses. Our results suggest that memory can be stored in the correlation structure of a network undergoing rapid synaptic remodeling.
我们的大脑必须在比产生代表性的生物成分的典型寿命长得多的时间内保持对世界的表示。例如,最近的研究表明,成年小鼠海马体中的树突棘是短暂的,平均寿命约为 10 天。如果这是真的,如果所有棘突的更替率都相同,那么在 30 天内,特定神经元上的 95%的兴奋性突触都会发生更替;然而,神经元的感受野在这段时间内可能相对稳定。在这里,我们使用计算建模来询问在海马体和视觉皮层等神经回路中,突触更替的情况下,记忆如何能够持续存在。我们证明,在对突触前活动模式进行重放期间的赫布可塑性可以将新形成的突触整合到预先存在的记忆中。此外,我们发现,在海马体位置细胞网格细胞到位置细胞转换模型和 V1 中的中心环绕到简单细胞转换模型中,重放期间的赫布可塑性足以稳定位置细胞的感受野。总的来说,这些数据表明,一种简单的可塑性规则,即突触强度的相关赫布可塑性,足以在突触更替的情况下保持神经表示,即使没有活动依赖性的结构可塑性。最近的研究表明,在某些大脑结构中,突触会迅速更替;然而,记忆似乎会持续更长时间。我们表明,在海马体和皮质网络的计算模型中,重激活事件期间的突触强度赫布可塑性可以在所有突触更替的情况下保存记忆。我们的结果表明,记忆可以存储在经历快速突触重塑的网络的相关结构中。
J Neurophysiol. 2019-4-10
Biol Cybern. 2025-2-15
Proc Natl Acad Sci U S A. 2022-2-15
Proc Natl Acad Sci U S A. 2021-11-16
Front Comput Neurosci. 2019-9-24
J Exp Psychol Anim Learn Cogn. 2019-10
Curr Opin Neurobiol. 2017-7-12
Neuron. 2017-6-21
Neurobiol Learn Mem. 2017-9