Suppr超能文献

使用强化学习训练视觉运动皮层的尖峰神经元网络模型来进行虚拟球拍游戏。

Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning.

机构信息

Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America.

Dept. Physiology & Pharmacology, State University of New York Downstate, Brooklyn, New York, United States of America.

出版信息

PLoS One. 2022 May 11;17(5):e0265808. doi: 10.1371/journal.pone.0265808. eCollection 2022.

Abstract

Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. The models using these learning rules are often treated as black boxes, with little analysis on circuit architectures and learning mechanisms supporting optimal performance. Here we developed visual/motor spiking neuronal network models and trained them to play a virtual racket-ball game using several reinforcement learning algorithms inspired by the dopaminergic reward system. We systematically investigated how different architectures and circuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We also developed a new biologically-inspired learning rule that significantly enhanced performance, while reducing training time. Our models included visual areas encoding game inputs and relaying the information to motor areas, which used this information to learn to move the racket to hit the ball. Neurons in the early visual area relayed information encoding object location and motion direction across the network. Neuronal association areas encoded spatial relationships between objects in the visual scene. Motor populations received inputs from visual and association areas representing the dorsal pathway. Two populations of motor neurons generated commands to move the racket up or down. Model-generated actions updated the environment and triggered reward or punishment signals that adjusted synaptic weights so that the models could learn which actions led to reward. Here we demonstrate that our biologically-plausible learning rules were effective in training spiking neuronal network models to solve problems in dynamic environments. We used our models to dissect the circuit architectures and learning rules most effective for learning. Our model shows that learning mechanisms involving different neural circuits produce similar performance in sensory-motor tasks. In biological networks, all learning mechanisms may complement one another, accelerating the learning capabilities of animals. Furthermore, this also highlights the resilience and redundancy in biological systems.

摘要

最近的尖峰神经元网络模型已经使用各种学习规则在静态环境中进行了行为训练,这些学习规则具有不同程度的生物学真实性。这些模型中的大多数都没有在动态视觉环境中进行测试,在动态视觉环境中,模型必须对未来状态进行预测,并相应地调整其行为。使用这些学习规则的模型通常被视为黑盒,对支持最佳性能的电路结构和学习机制几乎没有分析。在这里,我们开发了视觉/运动尖峰神经元网络模型,并使用几种受多巴胺能奖励系统启发的强化学习算法对其进行训练,以进行虚拟球拍球游戏。我们系统地研究了不同的架构和电路模式(前馈、递归、反馈)如何有助于学习和性能。我们还开发了一种新的基于生物学的学习规则,该规则显著提高了性能,同时减少了训练时间。我们的模型包括编码游戏输入并将信息传递到运动区的视觉区,运动区利用这些信息学习移动球拍击球。早期视觉区的神经元在网络中传递编码物体位置和运动方向的信息。神经元关联区编码视觉场景中物体之间的空间关系。运动区接收来自代表背侧通路的视觉和关联区的输入。两个运动神经元群体产生移动球拍上下的命令。模型生成的动作更新环境,并触发奖励或惩罚信号,调整突触权重,以便模型可以学习哪些动作会导致奖励。在这里,我们证明了我们基于生物学的学习规则在训练尖峰神经元网络模型以解决动态环境中的问题方面是有效的。我们使用我们的模型来剖析最有效的学习架构和学习规则,以进行学习。我们的模型表明,涉及不同神经电路的学习机制在感觉运动任务中产生相似的性能。在生物网络中,所有的学习机制可能相互补充,从而加速动物的学习能力。此外,这也突出了生物系统的弹性和冗余性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db80/9094569/3e21470b2fd8/pone.0265808.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验