State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
School of Information Science and Technology, Beijing Normal University, Beijing, China.
PLoS One. 2019 Apr 10;14(4):e0214937. doi: 10.1371/journal.pone.0214937. eCollection 2019.
Multivariate analysis methods have been widely applied to decode brain states from functional magnetic resonance imaging (fMRI) data. Among various multivariate analysis methods, partial least squares regression (PLSR) is often used to select relevant features for decoding brain states. However, PLSR is seldom directly used as a classifier to decode brain states from fMRI data. It is unclear how PLSR classifiers perform in brain-state decoding using fMRI. In this study, we propose two types of two-step PLSR classifiers that use PLSR/sparse PLSR (SPLSR) to select features and PLSR for classification to improve the performance of the PLSR classifier. The results of simulated and real fMRI data demonstrated that the PLSR classifier using PLSR/SPLSR to select features outperformed both the PLSR classifier using a general linear model (GLM) and the support vector machine (SVM) using PLSR/SPLSR/GLM in most cases. Moreover, PLSR using SPLSR to select features showed the best performance among all of the methods. Compared to GLM, PLSR is more sensitive in selecting the voxels that are specific to each task. The results suggest that the performance of the PLSR classifier can be largely improved when the PLSR classifier is combined with the feature selection methods of SPLSR and PLSR.
多元分析方法已广泛应用于从功能磁共振成像 (fMRI) 数据中解码大脑状态。在各种多元分析方法中,偏最小二乘回归 (PLSR) 常用于选择与解码大脑状态相关的特征。然而,PLSR 很少直接用作从 fMRI 数据中解码大脑状态的分类器。尚不清楚 PLSR 分类器在 fMRI 脑状态解码中的表现如何。在这项研究中,我们提出了两种两步 PLSR 分类器,它们使用 PLSR/稀疏 PLSR (SPLSR) 选择特征,使用 PLSR 进行分类,以提高 PLSR 分类器的性能。模拟和真实 fMRI 数据的结果表明,在大多数情况下,使用 PLSR/SPLSR 选择特征的 PLSR 分类器的性能优于使用一般线性模型 (GLM) 的 PLSR 分类器和使用 PLSR/SPLSR/GLM 的支持向量机 (SVM)。此外,使用 SPLSR 选择特征的 PLSR 表现优于所有方法。与 GLM 相比,PLSR 在选择特定于每个任务的体素方面更为敏感。结果表明,当 PLSR 分类器与 SPLSR 和 PLSR 的特征选择方法相结合时,PLSR 分类器的性能可以得到很大提高。