Suppr超能文献

基于功能磁共振成像数据的偏最小二乘法判别分析。

Partial least squares for discrimination in fMRI data.

机构信息

Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0098, USA.

出版信息

Magn Reson Imaging. 2012 Apr;30(3):446-52. doi: 10.1016/j.mri.2011.11.001. Epub 2012 Jan 5.

Abstract

Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using principal component analysis (PCA), partial least squares (PLS) or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contain more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using functional magnetic resonance imaging as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk.

摘要

基于家族史和载脂蛋白 E4 状态,使用多元判别方法比较了认知正常的女性群体的脑激活模式,这些女性处于阿尔茨海默病高风险或低风险。线性判别分析(LDA)之前使用主成分分析(PCA)、偏最小二乘法(PLS)或新的有向偏最小二乘法(OrPLS)进行降维。目的是确定一种功能连接的脑区空间模式,该模式由风险组差异表达,并产生最佳的分类准确性。当数据中特征变量的数量多于个体受试者的观察值时,在进行 LDA 之前需要进行多元降维。虽然 PCA 常用于识别神经影像学数据中的协方差模式,但这种方法仅识别总体变异性,并且无法区分组间变异性和组内变异性。PLS 和 OrPLS 通过纳入有关类结构的信息提供了更集中的降维,从而导致更简洁的判别模型。性能是根据交叉验证的错误分类率来评估的。结果支持使用功能磁共振成像作为成像生物标志物或诊断工具来区分患有疾病或高风险的个体的潜力。

相似文献

1
Partial least squares for discrimination in fMRI data.基于功能磁共振成像数据的偏最小二乘法判别分析。
Magn Reson Imaging. 2012 Apr;30(3):446-52. doi: 10.1016/j.mri.2011.11.001. Epub 2012 Jan 5.
5
Semantic memory activation in amnestic mild cognitive impairment.遗忘型轻度认知障碍中的语义记忆激活
Brain. 2009 Aug;132(Pt 8):2068-78. doi: 10.1093/brain/awp157. Epub 2009 Jun 10.

引用本文的文献

7
Data analysis methods for defining biomarkers from omics data.用于从组学数据中定义生物标志物的数据分析方法。
Anal Bioanal Chem. 2022 Jan;414(1):235-250. doi: 10.1007/s00216-021-03813-7. Epub 2021 Dec 24.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验