Department of Radiology, Mayo Clinic, Rochester, MN, United States of America.
Phys Med Biol. 2019 May 16;64(10):105014. doi: 10.1088/1361-6560/ab17fa.
Multi-energy CT acquires simultaneous multiple x-ray attenuation measurements from different energy spectra which facilitates the computation of virtual monoenergetic images (VMI) at a specific photon energy (keV). Since the contrast between iodine attenuation and the attenuation of surrounding soft tissues increases at lower x-ray energies, VMIs in the range of 40-70 keV can be used to improve iodine visualization. However, at lower energy levels, image noise in VMIs is substantially increased, which counteracts the benefits from the increased iodine contrast, resulting in a decreased iodine contrast-to-noise ratio (CNR). There exists considerable data redundancy between multi-energy CT images created from the same acquisition. Similarly, a substantial spatio-spectral data redundancy exists between multi-energy CT images and the corresponding VMIs. In this work, we develop a denoising framework that exploits this data redundancy to improve iodine CNR in the VMIs. We accomplish this by applying prior-knowledge-aware iterative denoising to low-energy VMIs; we refer to the denoised images as mono-PKAID images. The proposed framework was evaluated using phantom and in vivo data acquired on a research whole-body photon-counting-detector CT, as well as using data from a commercial dual-source dual-energy CT system. The results of phantom experiments show that the proposed framework can preserve image resolution and noise texture compared to the original VMIs, while reducing noise to improve iodine CNR. Quantitative measurements show that the iodine CNR of 50 keV VMI is improved by 1.8-fold using the proposed method, relative to the VMI produced using commercial software (Mono+). With mono-PKAID, VMIs at lower keV take full advantage of higher iodine contrast without substantially increasing image noise. These observations were confirmed using patient data sets, which demonstrated that mono-PKAID reduced image noise, improved CNR in anatomical regions with iodine perfusion by 1.8-fold, and potentially enhanced the visibility of focal liver lesions.
多能量 CT 从不同能谱同时获取多个 X 射线衰减测量值,从而可以在特定的光子能量(keV)计算虚拟单能量图像(VMI)。由于在较低的 X 射线能量下碘衰减与周围软组织衰减之间的对比度增加,因此可以使用 40-70keV 范围内的 VMI 来改善碘可视化。然而,在较低的能级下,VMI 中的图像噪声会大大增加,这会抵消增加碘对比度带来的益处,从而导致碘对比度噪声比(CNR)降低。从同一采集生成的多能量 CT 图像之间存在相当大的数据冗余。同样,多能量 CT 图像与相应的 VMI 之间存在大量的空间-光谱数据冗余。在这项工作中,我们开发了一种去噪框架,利用这种数据冗余来提高 VMI 中的碘 CNR。我们通过对低能 VMI 应用具有先验知识感知的迭代去噪来实现这一点;我们将去噪后的图像称为单-PKAID 图像。该框架使用在研究型全身光子计数探测器 CT 上采集的体模和体内数据以及使用商业双源双能 CT 系统的数据进行了评估。体模实验的结果表明,与原始 VMI 相比,所提出的框架可以保持图像分辨率和噪声纹理,同时降低噪声以提高碘 CNR。定量测量表明,与使用商业软件(Mono+)生成的 VMI 相比,所提出的方法可将 50keV VMI 的碘 CNR 提高 1.8 倍。使用 mono-PKAID,较低 keV 的 VMI 可以充分利用更高的碘对比度,而不会显著增加图像噪声。这些观察结果通过患者数据集得到了证实,这些数据集表明 mono-PKAID 降低了图像噪声,使具有碘灌注的解剖区域的 CNR 提高了 1.8 倍,并且可能增强了肝局灶性病变的可见度。