Suppr超能文献

利用虚拟单能量成像和先验知识感知迭代降噪(mono-PKAID)提高碘对比噪声比。

Improving iodine contrast to noise ratio using virtual monoenergetic imaging and prior-knowledge-aware iterative denoising (mono-PKAID).

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, United States of America.

出版信息

Phys Med Biol. 2019 May 16;64(10):105014. doi: 10.1088/1361-6560/ab17fa.

Abstract

Multi-energy CT acquires simultaneous multiple x-ray attenuation measurements from different energy spectra which facilitates the computation of virtual monoenergetic images (VMI) at a specific photon energy (keV). Since the contrast between iodine attenuation and the attenuation of surrounding soft tissues increases at lower x-ray energies, VMIs in the range of 40-70 keV can be used to improve iodine visualization. However, at lower energy levels, image noise in VMIs is substantially increased, which counteracts the benefits from the increased iodine contrast, resulting in a decreased iodine contrast-to-noise ratio (CNR). There exists considerable data redundancy between multi-energy CT images created from the same acquisition. Similarly, a substantial spatio-spectral data redundancy exists between multi-energy CT images and the corresponding VMIs. In this work, we develop a denoising framework that exploits this data redundancy to improve iodine CNR in the VMIs. We accomplish this by applying prior-knowledge-aware iterative denoising to low-energy VMIs; we refer to the denoised images as mono-PKAID images. The proposed framework was evaluated using phantom and in vivo data acquired on a research whole-body photon-counting-detector CT, as well as using data from a commercial dual-source dual-energy CT system. The results of phantom experiments show that the proposed framework can preserve image resolution and noise texture compared to the original VMIs, while reducing noise to improve iodine CNR. Quantitative measurements show that the iodine CNR of 50 keV VMI is improved by 1.8-fold using the proposed method, relative to the VMI produced using commercial software (Mono+). With mono-PKAID, VMIs at lower keV take full advantage of higher iodine contrast without substantially increasing image noise. These observations were confirmed using patient data sets, which demonstrated that mono-PKAID reduced image noise, improved CNR in anatomical regions with iodine perfusion by 1.8-fold, and potentially enhanced the visibility of focal liver lesions.

摘要

多能量 CT 从不同能谱同时获取多个 X 射线衰减测量值,从而可以在特定的光子能量(keV)计算虚拟单能量图像(VMI)。由于在较低的 X 射线能量下碘衰减与周围软组织衰减之间的对比度增加,因此可以使用 40-70keV 范围内的 VMI 来改善碘可视化。然而,在较低的能级下,VMI 中的图像噪声会大大增加,这会抵消增加碘对比度带来的益处,从而导致碘对比度噪声比(CNR)降低。从同一采集生成的多能量 CT 图像之间存在相当大的数据冗余。同样,多能量 CT 图像与相应的 VMI 之间存在大量的空间-光谱数据冗余。在这项工作中,我们开发了一种去噪框架,利用这种数据冗余来提高 VMI 中的碘 CNR。我们通过对低能 VMI 应用具有先验知识感知的迭代去噪来实现这一点;我们将去噪后的图像称为单-PKAID 图像。该框架使用在研究型全身光子计数探测器 CT 上采集的体模和体内数据以及使用商业双源双能 CT 系统的数据进行了评估。体模实验的结果表明,与原始 VMI 相比,所提出的框架可以保持图像分辨率和噪声纹理,同时降低噪声以提高碘 CNR。定量测量表明,与使用商业软件(Mono+)生成的 VMI 相比,所提出的方法可将 50keV VMI 的碘 CNR 提高 1.8 倍。使用 mono-PKAID,较低 keV 的 VMI 可以充分利用更高的碘对比度,而不会显著增加图像噪声。这些观察结果通过患者数据集得到了证实,这些数据集表明 mono-PKAID 降低了图像噪声,使具有碘灌注的解剖区域的 CNR 提高了 1.8 倍,并且可能增强了肝局灶性病变的可见度。

相似文献

引用本文的文献

7
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.光谱光子计数CT:成像算法与性能评估
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
9
Photon Counting CT: Clinical Applications and Future Developments.光子计数CT:临床应用与未来发展
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):441-452. doi: 10.1109/trpms.2020.3020212. Epub 2020 Aug 28.

本文引用的文献

2
Photon-counting CT: Technical Principles and Clinical Prospects.光子计数 CT:技术原理与临床前景。
Radiology. 2018 Nov;289(2):293-312. doi: 10.1148/radiol.2018172656. Epub 2018 Sep 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验