Suppr超能文献

基于深度学习的多能量CT低能量虚拟单能图像直接合成

Deep-learning-based direct synthesis of low-energy virtual monoenergetic images with multi-energy CT.

作者信息

Gong Hao, Marsh Jeffrey F, D'Souza Karen N, Huber Nathan R, Rajendran Kishore, Fletcher Joel G, McCollough Cynthia H, Leng Shuai

机构信息

Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States.

出版信息

J Med Imaging (Bellingham). 2021 Sep;8(5):052104. doi: 10.1117/1.JMI.8.5.052104. Epub 2021 Apr 19.

Abstract

We developed a deep learning method to reduce noise and beam-hardening artifact in virtual monoenergetic image (VMI) at low x-ray energy levels. An encoder-decoder type convolutional neural network was implemented with customized inception modules and in-house-designed training loss (denoted as Incept-net), to directly estimate VMI from multi-energy CT images. Images of an abdomen-sized water phantom with varying insert materials were acquired from a research photon-counting-detector CT. The Incept-net was trained with image patches ( ) extracted from the phantom data, as well as synthesized, random-shaped numerical insert materials. The whole CT images ( ) with the remaining real insert materials that were unseen in network training were used for testing. Seven contrast-enhanced abdominal CT exams were used for preliminary evaluation of Incept-net generalizability over anatomical background. Mean absolute percentage error (MAPE) was used to evaluate CT number accuracy. Compared to commercial VMI software, Incept-net largely suppressed beam-hardening artifact and reduced noise (53%) in phantom study. Incept-net presented comparable CT number accuracy at higher-density ( -value [0.0625, 0.999]) and improved it at lower-density inserts ( ) with overall MAPE: Incept-net [2.9%, 4.6%]; commercial-VMI [6.7%, 10.9%]. In patient images, Incept-net suppressed beam-hardening artifact and reduced noise (up to 50%, ). In this preliminary study, Incept-net presented the potential to improve low-energy VMI quality.

摘要

我们开发了一种深度学习方法,以减少低X射线能量水平下虚拟单能图像(VMI)中的噪声和线束硬化伪影。采用定制的初始模块和内部设计的训练损失(称为Incept-net)实现了编码器-解码器类型的卷积神经网络,以直接从多能量CT图像估计VMI。从研究用光子计数探测器CT获取了具有不同插入材料的腹部大小水模体的图像。Incept-net使用从模体数据中提取的图像块( )以及合成的、随机形状的数字插入材料进行训练。将网络训练中未见过的带有剩余真实插入材料的完整CT图像( )用于测试。使用七次腹部增强CT检查对Incept-net在解剖背景上的通用性进行初步评估。平均绝对百分比误差(MAPE)用于评估CT值准确性。与商业VMI软件相比,Incept-net在模体研究中大大抑制了线束硬化伪影并降低了噪声(53%)。Incept-net在较高密度( -值[0.0625, 0.999])下呈现出可比的CT值准确性,在较低密度插入物( )下有所提高,总体MAPE为:Incept-net [2.9%, 4.6%];商业VMI [6.7%, 10.9%]。在患者图像中,Incept-net抑制了线束硬化伪影并降低了噪声(高达50%, )。在这项初步研究中,Incept-net展现出改善低能量VMI质量的潜力。

相似文献

2
Deep-learning-based direct inversion for material decomposition.基于深度学习的材料分解直接反演
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.

引用本文的文献

7
Special Section Guest Editorial: Computed tomography (CT) at 50 years.专题客座编辑:计算机断层扫描(CT)问世50周年
J Med Imaging (Bellingham). 2021 Sep;8(5):052101. doi: 10.1117/1.JMI.8.5.052101. Epub 2021 Oct 29.

本文引用的文献

1
Deep-learning-based direct inversion for material decomposition.基于深度学习的材料分解直接反演
Med Phys. 2020 Dec;47(12):6294-6309. doi: 10.1002/mp.14523. Epub 2020 Oct 30.
2
Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT.虚拟单能量双能 CT 的临床应用评价
Radiology. 2019 Nov;293(2):260-271. doi: 10.1148/radiol.2019182297. Epub 2019 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验