Micheletti Cristian, Orland Henri
International School for Advanced Studies (SISSA), Physics Area via Bonomea 265, I-34136 Trieste, Italy.
Institut de Physique Théorique, CEA, CNRS, UMR3681, F-91191 Gif-sur-Yvette, France.
Polymers (Basel). 2017 May 29;9(6):196. doi: 10.3390/polym9060196.
We propose a stochastic method to generate exactly the overdamped Langevin dynamics of semi-flexible Gaussian chains, conditioned to evolve between given initial and final conformations in a preassigned time. The initial and final conformations have no restrictions, and hence can be in any knotted state. Our method allows the generation of statistically independent paths in a computationally efficient manner. We show that these conditioned paths can be exactly generated by a set of local stochastic differential equations. The method is used to analyze the transition routes between various knots in crossable filamentous structures, thus mimicking topological reconnections occurring in soft matter systems or those introduced in DNA by topoisomerase enzymes. We find that the average number of crossings, writhe and unknotting number are not necessarily monotonic in time and that more complex topologies than the initial and final ones can be visited along the route.
我们提出了一种随机方法,用于精确生成半柔性高斯链的过阻尼朗之万动力学,条件是在预先指定的时间内在给定的初始和最终构象之间演化。初始和最终构象没有限制,因此可以处于任何打结状态。我们的方法允许以计算高效的方式生成统计独立的路径。我们表明,这些条件路径可以由一组局部随机微分方程精确生成。该方法用于分析可穿越丝状结构中各种结之间的转变路径,从而模拟软物质系统中发生的拓扑重连或拓扑异构酶在DNA中引入的拓扑重连。我们发现,交叉数、扭曲数和解结数的平均值在时间上不一定是单调的,并且沿着路径可以访问比初始和最终拓扑更复杂的拓扑。