Cabrera Jorge Nicolás, Ruiz Mariano M, Fascio Mirta, D'Accorso Norma, Mincheva Rosica, Dubois Philippe, Lizarraga Leonardo, Negri R Martín
Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
Polymers (Basel). 2017 Aug 2;9(8):331. doi: 10.3390/polym9080331.
Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS) films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs) and magnetic cobalt ferrites (CoFe₂O₄) prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field . The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM) and magnetic force microscopy (MFM). The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% /) and magnetic nanoparticles (2% /) generated a roughness increase of about 200% (with respect to PDMS films without any treatment), but that change was 400% for films cured in the presence of perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of . In the chemical method, the increase in roughness was even greater (1000%). Wells were generated with surface areas that were close to 100 μm² and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells), which are of great importance in superficial technological processes.
研究了两种方法来改变聚二甲基硅氧烷(PDMS)薄膜的表面粗糙度,第一种是物理方法,另一种是化学方法。物理方法包括在热交联之前分散多壁碳纳米管(MWCNTs)和磁性钴铁氧体(CoFe₂O₄),并在均匀磁场存在下固化复合体系。化学方法是将薄膜暴露于溴蒸气中,然后进行紫外线照射。表征技术包括扫描电子显微镜(SEM)、能量色散光谱(EDS)、傅里叶变换红外(FTIR)光谱、光学显微镜、原子力显微镜(AFM)和磁力显微镜(MFM)。通过AFM对表面粗糙度进行了定量分析。在物理方法中,MWCNTs(1% /)和磁性纳米颗粒(2% /)的随机分散使粗糙度增加了约200%(相对于未进行任何处理的PDMS薄膜),但对于在垂直于表面的 存在下固化的薄膜,该变化为400%。SEM、AFM和MFM表明磁性颗粒始终附着在碳纳米管上,对粗糙度的影响被解释为是由于分散随机性的破坏以及在 方向上可能的结构诱导。在化学方法中,粗糙度的增加甚至更大(1000%)。产生了表面积接近100μm²且深度达500nm 的孔。AFM图像和FTIR光谱的观察结果与紫外线在聚合物链上产生的Br自由基蚀刻假说一致。两种方法都引起了表面粗糙度的重要变化(化学方法由于表面孔的形成而产生了最大的变化),这在表面工艺过程中非常重要。