Suppr超能文献

氯化钠存在下甲烷水合物的自我保存与稳定性

Self-preservation and Stability of Methane Hydrates in the Presence of NaCl.

作者信息

Prasad Pinnelli S R, Kiran Burla Sai

机构信息

Gas Hydrate Division, CSIR-National Geophysical Research Institute (CSIR-NGRI), Hyderabad, 500 007, India.

Academy of Scientific and Innovative Research (AcSIR), CSIR-NGRI Campus, Hyderabad, 500 007, India.

出版信息

Sci Rep. 2019 Apr 10;9(1):5860. doi: 10.1038/s41598-019-42336-1.

Abstract

Gas hydrate, a solid transformed from an ensemble of water and gaseous molecules under suitable thermodynamic conditions, is present in marine and permafrost strata. The ability of methane hydrates to exist outside of its standard stability zone is vital in many aspects, such as its utility in gas storage and transportation, hydrate-related climate changes and gas reservoirs on the planet. A systematic study on the stability of methane hydrates divulges that the gas uptake decreased by about 10% by increasing the NaCl content to 5.0 wt%. The hydrate formation kinetic is relatively slower in a system with higher NaCl. The self-preservation temperature window for hydrate systems with NaCl 1.5, 3.0 and 5.0 wt% dramatically shifted to a lower temperature (252 K), while it remained around 270 K for NaCl 0.0 and 0.5 wt%. Based on powder x-ray diffraction and micro-Raman spectroscopic studies, the presence of hydrohalite (NaCl·2HO) phase was identified along with the usual hydrate and ice phases. The eutectic melting of this mixture is responsible for shifting the hydrate stability to 252 K. A systematic lattice expansion of cubic phase infers the interaction between NaCl and water molecules of hydrate cages.

摘要

气体水合物是在合适的热力学条件下由水和气体分子集合体转变而成的固体,存在于海洋和永久冻土地层中。甲烷水合物在其标准稳定区之外存在的能力在许多方面都至关重要,例如其在气体储存和运输中的效用、与水合物相关的气候变化以及地球上的气藏。对甲烷水合物稳定性的系统研究表明,将氯化钠含量增加到5.0 wt%时,气体吸收量减少了约10%。在氯化钠含量较高的体系中,水合物形成动力学相对较慢。氯化钠含量为1.5、3.0和5.0 wt%的水合物体系的自我保存温度窗口显著移至较低温度(252 K),而氯化钠含量为0.0和0.5 wt%时则保持在270 K左右。基于粉末X射线衍射和显微拉曼光谱研究,除了常见的水合物和冰相外,还鉴定出了水氯镁石(NaCl·2H₂O)相。该混合物的共晶熔化导致水合物稳定性移至252 K。立方相的系统晶格膨胀推断出氯化钠与水合物笼中的水分子之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9799/6458167/e87f616414e0/41598_2019_42336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验