Borchardt Lars, Casco Mirian Elizabeth, Silvestre-Albero Joaquin
Department Inorganic Chemistry, TU Dresden, Bergstrasse 66, D-01062, Dresden, Germany.
Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-IUMA, Universidad de Alicante, Ctra. San Vicente del Raspeig-Alicante s/n, E-03690, San Vicente del Raspeig, Spain.
Chemphyschem. 2018 Jun 5;19(11):1298-1314. doi: 10.1002/cphc.201701250. Epub 2018 Apr 24.
Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology.
甲烷水合物具有巨大潜力,可成为受自然启发的化学储能替代物,因为它能在致密固相存储大量甲烷。由于其物理化学性质(如形成动力学、压力和温度稳定性)与本体系统相比有显著变化,将甲烷水合物嵌入多孔材料的受限环境可用于潜在应用。我们从材料科学角度审视这一主题,将多孔碳、二氧化硅、粘土、沸石和聚合物视为甲烷水合物形成的主体结构。我们讨论先进表征技术和理论模拟对阐明受限空间内甲烷水合物形成和解离过程的贡献。我们概述该系统目前面临的科学挑战,并展望该技术未来可能的应用。