Suppr超能文献

结构相关网络的元网络分析为脑网络发育提供见解。

Meta-Network Analysis of Structural Correlation Networks Provides Insights Into Brain Network Development.

作者信息

Xu Xiaohua, He Ping, Yap Pew-Thian, Zhang Han, Nie Jingxin, Shen Dinggang

机构信息

Department of Computer Science, Yangzhou University, Yangzhou, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

出版信息

Front Hum Neurosci. 2019 Mar 26;13:93. doi: 10.3389/fnhum.2019.00093. eCollection 2019.

Abstract

Analysis of developmental brain networks is fundamentally important for basic developmental neuroscience. In this paper, we focus on the temporally-covarying connection patterns, called meta-networks, and develop a new mathematical model for meta-network decomposition. With the proposed model, we decompose the developmental structural correlation networks of cortical thickness into five meta-networks. Each meta-network exhibits a distinctive spatial connection pattern, and its covarying trajectory highlights the temporal contribution of the meta-network along development. Systematic analysis of the meta-networks and covarying trajectories provides insights into three important aspects of brain network development.

摘要

发育脑网络分析对于基础发育神经科学至关重要。在本文中,我们聚焦于随时间变化的连接模式,即元网络,并开发了一种用于元网络分解的新数学模型。利用所提出的模型,我们将皮质厚度的发育结构相关网络分解为五个元网络。每个元网络都呈现出独特的空间连接模式,其变化轨迹突出了元网络在发育过程中的时间贡献。对元网络及其变化轨迹的系统分析为脑网络发育的三个重要方面提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验