Suppr超能文献

基于糖化血红蛋白升高的 1 型糖尿病青少年的连续血糖监测数据识别临床相关的糖代谢异常表型。

Identification of clinically relevant dysglycemia phenotypes based on continuous glucose monitoring data from youth with type 1 diabetes and elevated hemoglobin A1c.

机构信息

Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Pediatr Diabetes. 2019 Aug;20(5):556-566. doi: 10.1111/pedi.12856. Epub 2019 Apr 29.

Abstract

BACKGROUND/OBJECTIVE: To identify and characterize subgroups of adolescents with type 1 diabetes (T1D) and elevated hemoglobin A1c (HbA1c) who share patterns in their continuous glucose monitoring (CGM) data as "dysglycemia phenotypes."

METHODS

Data were analyzed from the Flexible Lifestyles Empowering Change randomized trial. Adolescents with T1D (13-16 years, duration >1 year) and HbA1c 8% to 13% (64-119 mmol/mol) wore blinded CGM at baseline for 7 days. Participants were clustered based on eight CGM metrics measuring hypoglycemia, hyperglycemia, and glycemic variability. Clusters were characterized by their baseline features and 18 months changes in HbA1c using adjusted mixed effects models. For comparison, participants were stratified by baseline HbA1c (≤/>9.0% [75 mmol/mol]).

RESULTS

The study sample included 234 adolescents (49.8% female, baseline age 14.8 ± 1.1 years, baseline T1D duration 6.4 ± 3.7 years, baseline HbA1c 9.6% ± 1.2%, [81 ± 13 mmol/mol]). Three Dysglycemia Clusters were identified with significant differences across all CGM metrics (P < .001). Dysglycemia Cluster 3 (n = 40, 17.1%) showed severe hypoglycemia and glycemic variability with moderate hyperglycemia and had a lower baseline HbA1c than Clusters 1 and 2 (P < .001). This cluster showed increases in HbA1c over 18 months (p-for-interaction = 0.006). No other baseline characteristics were associated with Dysglycemia Clusters. High HbA1c was associated with lower pump use, greater insulin doses, more frequent blood glucose monitoring, lower motivation, and lower adherence to diabetes self-management (all P < .05).

CONCLUSIONS

There are subgroups of adolescents with T1D for which glycemic control is challenged by different aspects of dysglycemia. Enhanced understanding of demographic, behavioral, and clinical characteristics that contribute to CGM-derived dysglycemia phenotypes may reveal strategies to improve treatment.

摘要

背景/目的:识别和描述 1 型糖尿病(T1D)青少年中存在的血糖升高(HbA1c)亚组,这些亚组在其连续血糖监测(CGM)数据中存在“血糖异常表型”模式。

方法

对来自灵活生活方式改变随机试验(Flexible Lifestyles Empowering Change randomized trial)的数据进行分析。13-16 岁、T1D 病程>1 年、HbA1c 8%-13%(64-119mmol/mol)的青少年在基线时佩戴盲法 CGM 7 天。根据 8 项 CGM 指标(测量低血糖、高血糖和血糖变异性)对参与者进行聚类。使用调整后的混合效应模型,根据基线特征和 18 个月 HbA1c 的变化来描述聚类特征。为了进行比较,根据基线 HbA1c(≤/>9.0%[75mmol/mol])对参与者进行分层。

结果

研究样本包括 234 名青少年(49.8%为女性,基线年龄 14.8±1.1 岁,基线 T1D 病程 6.4±3.7 年,基线 HbA1c 9.6%±1.2%,[81±13mmol/mol])。在所有 CGM 指标上均存在显著差异,确定了 3 个血糖异常聚类(P<0.001)。血糖异常聚类 3(n=40,17.1%)表现出严重的低血糖和血糖变异性,同时伴有中度高血糖,且基线 HbA1c 低于聚类 1 和聚类 2(P<0.001)。该聚类在 18 个月内 HbA1c 增加(p-for-interaction=0.006)。其他基线特征与血糖异常聚类无关。高 HbA1c 与较低的泵使用率、更大的胰岛素剂量、更频繁的血糖监测、较低的动机和较低的糖尿病自我管理依从性相关(所有 P<0.05)。

结论

存在不同血糖异常方面存在挑战的 1 型糖尿病青少年亚组。增强对导致 CGM 衍生血糖异常表型的人口统计学、行为和临床特征的理解,可能会发现改善治疗的策略。

相似文献

2
4
Continuous glucose monitoring reduces pubertal hyperglycemia of type 1 diabetes.
J Pediatr Endocrinol Metab. 2020 Jul 28;33(7):865-872. doi: 10.1515/jpem-2020-0057.
5
Timing of CGM initiation in pediatric diabetes: The CGM TIME Trial.
Pediatr Diabetes. 2021 Mar;22(2):279-287. doi: 10.1111/pedi.13144. Epub 2020 Nov 4.
7
The Relationship Between CGM-Derived Metrics, A1C, and Risk of Hypoglycemia in Older Adults With Type 1 Diabetes.
Diabetes Care. 2020 Oct;43(10):2349-2354. doi: 10.2337/dc20-0016. Epub 2020 May 27.
8
The role of glycemia in insulin resistance in youth with type 1 and type 2 diabetes.
Pediatr Diabetes. 2017 Sep;18(6):470-477. doi: 10.1111/pedi.12422. Epub 2016 Aug 9.

引用本文的文献

1
Finding Optimal Alphabet for Encoding Daily Continuous Glucose Monitoring Time Series Into Compressed Text.
J Diabetes Sci Technol. 2025 Mar 20:19322968251323913. doi: 10.1177/19322968251323913.
2
Heterogeneity of glycaemic phenotypes in type 1 diabetes.
Diabetologia. 2024 Aug;67(8):1567-1581. doi: 10.1007/s00125-024-06179-4. Epub 2024 May 23.
3
Statistical Packages and Algorithms for the Analysis of Continuous Glucose Monitoring Data: A Systematic Review.
J Diabetes Sci Technol. 2025 May;19(3):787-809. doi: 10.1177/19322968231221803. Epub 2024 Jan 5.
4
Glycaemia risk index uncovers distinct glycaemic variability patterns associated with remission status in type 1 diabetes.
Diabetologia. 2024 Jan;67(1):42-51. doi: 10.1007/s00125-023-06042-y. Epub 2023 Oct 27.

本文引用的文献

1
State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018.
Diabetes Technol Ther. 2019 Feb;21(2):66-72. doi: 10.1089/dia.2018.0384. Epub 2019 Jan 18.
2
The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes.
Diabetes Technol Ther. 2019 Feb;21(2):81-85. doi: 10.1089/dia.2018.0310. Epub 2018 Dec 21.
3
Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials.
Diabetes Care. 2019 Mar;42(3):400-405. doi: 10.2337/dc18-1444. Epub 2018 Oct 23.
4
Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring.
Diabetes Care. 2018 Nov;41(11):2275-2280. doi: 10.2337/dc18-1581. Epub 2018 Sep 17.
7
Glucotypes reveal new patterns of glucose dysregulation.
PLoS Biol. 2018 Jul 24;16(7):e2005143. doi: 10.1371/journal.pbio.2005143. eCollection 2018 Jul.
10
International Consensus on Use of Continuous Glucose Monitoring.
Diabetes Care. 2017 Dec;40(12):1631-1640. doi: 10.2337/dc17-1600.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验