Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany.
Department of Geological Sciences, School of Earth, Energy, and Environmental Sciences , Stanford University , Stanford , California 94305 , United States.
Environ Sci Technol. 2019 May 7;53(9):5005-5015. doi: 10.1021/acs.est.9b00495. Epub 2019 Apr 26.
Peatlands and other wetlands with abundant natural organic matter (NOM) are important sinks for antimony (Sb). While formation of Sb(III) sulfide phases or Sb(III) binding to NOM are discussed to decrease Sb mobility, the exact binding mechanisms remain elusive. Here, we reacted increasing sulfide concentrations with purified model peat at pH 6, forming reduced organic sulfur species, and subsequently equilibrated the reaction products with 50 μM of antimonite under anoxic conditions. Sulfur solid-phase speciation and the local binding environment of Sb were analyzed using X-ray absorption spectroscopy. We found that 85% of antimonite was sorbed by untreated peat. Sulfide-reacted peat increased sorption to 98%. Shell-by-shell fitting of Sb K-edge X-ray absorption fine structure spectra revealed Sb in untreated peat bound to carboxyl or phenol groups with average Sb-carbon distances of ∼2.90 Å. With increasing content of reduced organic sulfur, Sb was progressively coordinated to S atoms at distances of ∼2.45 Å and Sb-carbon distances of ∼3.33 Å, suggesting increasing Sb-thiol binding. Iterative target factor analysis allowed exclusion of reduced inorganic Sb-sulfur phases with similar Sb-sulfur distances. In conclusion, even when free sulfide concentrations are too low for formation of Sb-sulfur precipitates, peat NOM can sequester Sb in anoxic, sulfur-enriched environments.
富含天然有机质 (NOM) 的泥炭地和其他湿地是锑 (Sb) 的重要汇。虽然已经讨论了 Sb(III) 硫化物相的形成或 Sb(III) 与 NOM 的结合来降低 Sb 的迁移性,但确切的结合机制仍不清楚。在这里,我们在 pH 6 下用纯化的模型泥炭反应增加的硫化物浓度,形成还原的有机硫物种,然后在缺氧条件下使反应产物与 50 μM 的亚锑酸盐平衡。使用 X 射线吸收光谱分析了硫固相形态和 Sb 的局部结合环境。我们发现,未经处理的泥炭吸附了 85%的亚锑酸盐。经硫化物处理的泥炭将吸附率提高到 98%。Sb K 边 X 射线吸收精细结构光谱的逐壳拟合表明,未经处理的泥炭中的 Sb 与羧基或酚基结合,平均 Sb-碳距离约为 2.90 Å。随着还原有机硫含量的增加,Sb 逐渐与距离约为 2.45 Å 的 S 原子配位,Sb-碳距离约为 3.33 Å,表明 Sb-硫醇键合增加。迭代目标因子分析排除了具有相似 Sb-S 距离的还原无机 Sb-硫相。总之,即使在游离硫化物浓度太低而无法形成 Sb-硫沉淀物的情况下,泥炭 NOM 也可以在缺氧、富硫的环境中固定 Sb。