LABIOMEP, INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
Serviço de Cirurgia Plástica e Reconstrutiva, IPO Porto, Porto, Portugal.
J Eur Acad Dermatol Venereol. 2019 Sep;33(9):1700-1705. doi: 10.1111/jdv.15611. Epub 2019 May 8.
The incidence rates of melanoma have risen to worrying levels over the last decade. Delayed diagnosis, due to faults on the detection stage, indicates the necessity of new aiding diagnosis techniques. Since metabolic activity is highly connected to neoplasia formation, a detection technique that focuses its results on vascular responses, as Infrared thermal (IRT), seems to be a viable option.
Static and dynamic (cooling) thermal images of melanoma and melanocytic nevi lesions were collected and analysed to retrieve thermal parameters characteristic of this skin lesion types. The steady-state and dynamic variables were tested separately with different machine learning classifiers to verify whether the distinction of melanoma and nevi lesions was achievable.
The differentiation of both types of skin tumours was doable, achieving an accuracy of 84.2% and a sensitivity of 91.3% with the implementation of a learner based on support vector machines and an input vector composed by static variables.
The use of IRT for skin tumour classification is achievable, but some improvement is needed to raise the metrics of sensitivity and specificity. For future work, it is recommended the study of dynamic parameters for the classification of other types of skin neoplasia.
过去十年间,黑色素瘤的发病率已上升至令人担忧的水平。由于检测阶段的失误导致诊断延迟,这表明需要新的辅助诊断技术。由于代谢活动与肿瘤形成高度相关,因此一种将其结果集中在血管反应上的检测技术(如红外热成像(IRT))似乎是一种可行的选择。
收集并分析了黑色素瘤和黑素细胞痣病变的静态和动态(冷却)热图像,以获取这种皮肤病变类型的特征性热参数。分别使用不同的机器学习分类器对稳态和动态变量进行了测试,以验证是否可以区分黑色素瘤和痣病变。
两种类型的皮肤肿瘤都可以区分,使用基于支持向量机的学习者和由静态变量组成的输入向量,实现了 84.2%的准确率和 91.3%的灵敏度。
使用 IRT 进行皮肤肿瘤分类是可行的,但需要进一步提高灵敏度和特异性的指标。对于未来的工作,建议研究动态参数以对其他类型的皮肤肿瘤进行分类。