Suppr超能文献

数字成像生物标志物为黑色素瘤筛查提供机器学习支持。

Digital imaging biomarkers feed machine learning for melanoma screening.

机构信息

Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA.

The Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA.

出版信息

Exp Dermatol. 2017 Jul;26(7):615-618. doi: 10.1111/exd.13250. Epub 2016 Dec 19.

Abstract

We developed an automated approach for generating quantitative image analysis metrics (imaging biomarkers) that are then analysed with a set of 13 machine learning algorithms to generate an overall risk score that is called a Q-score. These methods were applied to a set of 120 "difficult" dermoscopy images of dysplastic nevi and melanomas that were subsequently excised/classified. This approach yielded 98% sensitivity and 36% specificity for melanoma detection, approaching sensitivity/specificity of expert lesion evaluation. Importantly, we found strong spectral dependence of many imaging biomarkers in blue or red colour channels, suggesting the need to optimize spectral evaluation of pigmented lesions.

摘要

我们开发了一种自动生成定量图像分析指标(成像生物标志物)的方法,然后使用一组 13 种机器学习算法对这些指标进行分析,生成一个称为 Q 分数的整体风险评分。这些方法应用于一组 120 张“困难”的发育不良痣和黑色素瘤的皮肤镜图像,这些图像随后被切除/分类。该方法对黑色素瘤检测的敏感性为 98%,特异性为 36%,接近专家病变评估的敏感性/特异性。重要的是,我们发现许多成像生物标志物在蓝色或红色颜色通道中具有很强的光谱依赖性,这表明需要优化对色素性病变的光谱评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验