BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
BGI-Shenzhen, Shenzhen 518083, China.
Molecules. 2019 Apr 10;24(7):1411. doi: 10.3390/molecules24071411.
Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via indole-3-acetamide (IAM) and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function.
细菌吲哚-3-乙酸(IAA)作为微生物生理学中的效应分子,在促进植物生长方面发挥着重要作用。在这里,我们综合分析了约 7282 个代表不同细菌门的原核基因组,结合根相关的宏基因组数据,揭示了色氨酸依赖的 IAA 合成途径的分布,并定量了植物根际环境中与 IAA 合成相关的基因。我们发现,分析的细菌基因组中有 82.2%可能从色氨酸(Trp)或其中间产物合成 IAA。有趣的是,几种系统发育上多样化的细菌表现出优先利用不同途径的倾向,色胺和吲哚-3-丙酮酸途径在细菌中最为普遍。约 45.3%的研究基因组显示出多个共存的途径,构成了复杂的 IAA 合成系统。此外,根相关的宏基因组分析表明,根际细菌主要通过吲哚-3-乙酰胺(IAM)和色胺(TMP)途径合成 IAA,并且可能比定植于其他环境的细菌具有更强的 IAA 合成能力。所得结果刷新了我们对细菌 IAA 合成途径的认识,并为基于基因组集合的生理筛选提供了一种更快、劳动强度更低的替代方法。更好地了解细菌群落中的 IAA 合成,可以最大限度地利用细菌 IAA 来促进作物生长和生理功能。