Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.
Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
Nat Commun. 2016 Oct 24;7:13219. doi: 10.1038/ncomms13219.
The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.
地下世界拥有多达五分之一的生物量,包括驱动地球生物地球化学循环的关键转化过程的微生物群落。然而,对于这些环境中复杂微生物群落的结构以及生物间相互作用如何塑造生态系统功能,我们知之甚少。在这里,我们应用基于 terabase 规模的培养独立宏基因组学方法,对含水层沉积物和地下水进行研究,重建了 2540 个草案质量、近完整和完整的菌株解析基因组,这些基因组代表了大多数已知的细菌门,以及 47 个新发现的门水平谱系。跨越这一广泛的系统发育多样性的代谢分析,代表了在该系统中检测到的生物的高达 36%,用于记录共存生物中途径的分布。与先前的研究结果一致,这些结果表明在简单的共生体中存在代谢转换,我们发现群落中的很少有生物可以进行多个连续的氧化还原转化。随着环境条件的变化,不同的生物组合被选择,改变了主要生物地球化学循环之间的联系。