Suppr超能文献

基于广义极小极大凹惩罚的稀疏心电图去噪。

Sparse ECG Denoising with Generalized Minimax Concave Penalty.

机构信息

Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.

School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Sensors (Basel). 2019 Apr 10;19(7):1718. doi: 10.3390/s19071718.

Abstract

The electrocardiogram (ECG) is an important diagnostic tool for cardiovascular diseases. However, ECG signals are susceptible to noise, which may degenerate waveform and cause misdiagnosis. In this paper, the ECG noise reduction techniques based on sparse recovery are investigated. A novel sparse ECG denoising framework combining low-pass filtering and sparsity recovery is proposed. Two sparsity recovery algorithms are developed based on the traditional ℓ 1 -norm penalty and the novel generalized minimax concave (GMC) penalty, respectively. Compared with the ℓ 1 -norm penalty, the non-differentiable non-convex GMC penalty has the potential to strongly promote sparsity while maintaining the convexity of the cost function. Moreover, the GMC punishes large values less severely than ℓ 1 -norm, which is utilized to overcome the drawback of underestimating the high-amplitude components for the ℓ 1 -norm penalty. The proposed methods are evaluated on ECG signals from the MIT-BIH Arrhythmia database. The results show that underestimating problem is overcome by the proposed GMC-based method. The GMC-based method shows significant improvement with respect to the average of output signal-to-noise ratio improvement ( S N R i m p ), the average of root mean square error (RMSE) and the percent root mean square difference (PRD) over almost any given SNR compared with the classical methods, thus providing promising approaches for ECG denoising.

摘要

心电图(ECG)是心血管疾病的重要诊断工具。然而,心电图信号容易受到噪声的干扰,这可能会使波形退化并导致误诊。本文研究了基于稀疏恢复的心电图降噪技术。提出了一种结合低通滤波和稀疏恢复的新颖稀疏 ECG 去噪框架。基于传统的ℓ 1 -范数罚函数和新颖的广义最小最大凹(GMC)罚函数,分别开发了两种稀疏恢复算法。与ℓ 1 -范数罚函数相比,不可微非凸 GMC 罚函数具有强烈促进稀疏性的潜力,同时保持成本函数的凸性。此外,GMC 对大值的惩罚不如ℓ 1 -范数那么严重,这被用来克服ℓ 1 -范数罚函数低估高幅度分量的缺点。所提出的方法在来自麻省理工学院-贝斯以色列执事医疗中心心律失常数据库的 ECG 信号上进行了评估。结果表明,所提出的基于 GMC 的方法克服了低估问题。与经典方法相比,基于 GMC 的方法在几乎任何给定 SNR 下的平均输出信噪比改善( S N R i m p )、平均均方根误差(RMSE)和均方根差异百分比(PRD)方面都有显著提高,从而为 ECG 去噪提供了有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1793/6480066/e9acf63b141a/sensors-19-01718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验