Yang Siyeong, Park Kkotchorong, Kim Bongsoo, Kang Taejoon
Department of Chemistry, KAIST, Daejeon 34141, Korea.
Bionanotechnology Research Center, KRIBB, Daejeon 34141, Korea.
Nanomaterials (Basel). 2019 Apr 10;9(4):595. doi: 10.3390/nano9040595.
Au nanostructures (Au NSs) have been considered promising materials for applications in fuel cell catalysis, electrochemistry, and plasmonics. For the fabrication of high-performance Au NS-based electronic or electrochemical devices, Au NSs should have clean surfaces and be directly supported on a substrate without any mediating molecules. Herein, we report the vapor-phase synthesis of Au NSs on a fluorine-doped tin oxide (FTO) substrate at 120 °C and their application to the electrocatalytic methanol oxidation reaction (MOR). By employing AuCl as a precursor, the synthesis temperature for Au NSs was reduced to under 200 °C, enabling the direct synthesis of Au NSs on an FTO substrate in the vapor phase. Considering that previously reported vapor-phase synthesis of Au NSs requires a high temperature over 1000 °C, this proposed synthetic method is remarkably simple and practical. Moreover, we could selectively synthesize Au nanoparticles (NPs) and nanoplates by adjusting the location of the substrate, and the size of the Au NPs was controllable by changing the reaction temperature. The synthesized Au NSs are a single-crystalline material with clean surfaces that achieved a high methanol oxidation current density of 14.65 mA/cm² when intimately supported by an FTO substrate. We anticipate that this novel synthetic method can widen the applicability of vapor-phase synthesized Au NSs for electronic and electrochemical devices.
金纳米结构(Au NSs)被认为是在燃料电池催化、电化学和等离子体学等领域应用的有前景的材料。为了制造基于高性能Au NSs的电子或电化学器件,Au NSs应具有清洁的表面,并直接支撑在没有任何中介分子的基底上。在此,我们报道了在120°C下在氟掺杂氧化锡(FTO)基底上气相合成Au NSs及其在电催化甲醇氧化反应(MOR)中的应用。通过使用AuCl作为前驱体,Au NSs的合成温度降低到200°C以下,从而能够在气相中直接在FTO基底上合成Au NSs。考虑到先前报道的Au NSs气相合成需要超过1000°C的高温,这种提出的合成方法非常简单实用。此外,我们可以通过调整基底的位置选择性地合成金纳米颗粒(NPs)和纳米片,并且通过改变反应温度可以控制Au NPs的尺寸。合成的Au NSs是具有清洁表面的单晶材料,当紧密支撑在FTO基底上时,实现了14.65 mA/cm²的高甲醇氧化电流密度。我们预计这种新颖的合成方法可以拓宽气相合成Au NSs在电子和电化学器件中的适用性。