Cattaneo Stefano, Althahban Sultan, Freakley Simon J, Sankar Meenakshisundaram, Davies Thomas, He Qian, Dimitratos Nikolaos, Kiely Christopher J, Hutchings Graham J
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
Nanoscale. 2019 Apr 25;11(17):8247-8259. doi: 10.1039/c8nr09917k.
The synthesis of supported bimetallic nanoparticles with well-defined size and compositional parameters has long been a challenge. Although batch colloidal methods are commonly used to pre-form metal nanoparticles with the desired size-range in solution, inhomogeneous mixing of the reactant solutions often leads to variations in size, structure and composition from batch-to-batch and even particle-to-particle. Here we describe a millifluidic approach for the production of oxide supported monometallic Au and bimetallic AuPd nanoparticles in a continuous fashion. This optimised method enables the production of nanoparticles with smaller mean sizes, tighter particle size distributions and a more uniform particle-to-particle chemical composition as compared to the conventional batch procedure. In addition, we describe a facile procedure to prepare bimetallic Au@Pd core-shell nanoparticles in continuous flow starting from solutions of the metal precursors. Moreover, the relative ease of scalability of this technique makes the proposed methodology appealing not only for small-scale laboratory purposes, but also for the industrial-scale production of supported metal nanoparticles.
长期以来,合成具有明确尺寸和组成参数的负载型双金属纳米颗粒一直是一项挑战。尽管批量胶体法通常用于在溶液中预先形成具有所需尺寸范围的金属纳米颗粒,但反应物溶液的不均匀混合往往导致批次间甚至颗粒间的尺寸、结构和组成发生变化。在此,我们描述了一种微流控方法,用于以连续方式生产氧化物负载的单金属金和双金属金钯纳米颗粒。与传统的批量方法相比,这种优化方法能够生产出平均尺寸更小、粒径分布更窄且颗粒间化学成分更均匀的纳米颗粒。此外,我们还描述了一种简便的方法,可从金属前驱体溶液开始,在连续流动中制备双金属金@钯核壳纳米颗粒。而且,该技术相对易于扩展的特点使得所提出的方法不仅对小规模实验室用途具有吸引力,而且对负载型金属纳米颗粒的工业规模生产也具有吸引力。