Canós Valero Adrià, Kislov Denis, Gurvitz Egor A, Shamkhi Hadi K, Pavlov Alexander A, Redka Dmitrii, Yankin Sergey, Zemánek Pavel, Shalin Alexander S
ITMO University Kronverksky prospect 49 St. Petersburg 197101 Russia.
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences (INME RAS) Nagatinskaya Street, House 16A, Building 11 Moscow 119991 Russia.
Adv Sci (Weinh). 2020 Apr 24;7(11):1903049. doi: 10.1002/advs.201903049. eCollection 2020 Jun.
The ever-growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand-new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light-matter interactions. A concept is proposed, featuring dual on-chip functionality: boosted optically driven diffusion and nanoparticle sorting. High-index dielectric nanoantennae is specially designed to ensure strongly enhanced spin-orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl-spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving-part-free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on-chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light-controlled navigation of nanoparticles, viruses or biomolecules.
不断发展的微流控领域需要在缩小的尺度上对流体流动进行精确且灵活的控制。当前的限制要求有各种可控组件,以便在微腔和微反应器内执行多种操作。在此背景下,全新的纳米光子学方法可以通过微调光与物质的相互作用,显著增强现有能力并提供独特功能。本文提出了一种具有双重片上功能的概念:增强光驱动扩散和纳米颗粒分选。特别设计了高折射率介质纳米天线,以确保从激光束到散射场的自旋 - 轨道角动量转移得到显著增强。因此,亚波长光学纳米涡旋出现,通过卷曲自旋光学力和辐射压力之间的相互作用驱动等离子体纳米颗粒的螺旋运动。纳米涡旋的尺寸比传统基于光束的方法小一个数量级。纳米颗粒介导纳米受限流体运动,从而在微腔内实现无移动部件的纳米混合。此外,利用卷曲光学力对尺寸的非平凡依赖性,可以实现对金纳米颗粒的精确纳米级分选,这对于片上分离和过滤是必需的。总之,本文引入了一个通用平台,用于进一步缩小无移动部件、光驱动的微流控芯片,以实现快速化学分析、乳液制备或通过对纳米颗粒、病毒或生物分子进行光控导航来生成化学梯度。