Suppr超能文献

发育中小鼠前列腺轴突的时空图谱。

A temporal and spatial map of axons in developing mouse prostate.

作者信息

Turco Anne E, Cadena Mark T, Zhang Helen L, Sandhu Jaskiran K, Oakes Steven R, Chathurvedula Thrishna, Peterson Richard E, Keast Janet R, Vezina Chad M

机构信息

Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Histochem Cell Biol. 2019 Jul;152(1):35-45. doi: 10.1007/s00418-019-01784-6. Epub 2019 Apr 11.

Abstract

Prostate autonomic and sensory axons control glandular growth, fluid secretion, and smooth muscle contraction and are remodeled during cancer and inflammation. Morphogenetic signaling pathways reawakened during disease progression may drive this axon remodeling. These pathways are linked to proliferative activities in prostate cancer and benign prostate hyperplasia. However, little is known about which developmental signaling pathways guide axon investment into prostate. The first step in defining these pathways is pinpointing when axon subtypes first appear in prostate. We accomplished this by immunohistochemically mapping three axon subtypes (noradrenergic, cholinergic, and peptidergic) during fetal, neonatal, and adult stages of mouse prostate development. We devised a method for peri-prostatic axon density quantification and tested whether innervation is uniform across the proximo-distal axis of dorsal and ventral adult mouse prostate. Many axons directly interact with or innervate neuroendocrine cells in other organs, so we examined whether sensory or autonomic axons innervate neuroendocrine cells in prostate. We first detected noradrenergic, cholinergic, and peptidergic axons in prostate at embryonic day (E) 14.5. Noradrenergic and cholinergic axon densities are uniform across the proximal-distal axis of adult mouse prostate while peptidergic axons are denser in the periurethral and proximal regions. Peptidergic and cholinergic axons are closely associated with prostate neuroendocrine cells whereas noradrenergic axons are not. These results provide a foundation for understanding mouse prostatic axon development and organization and, provide strategies for quantifying axons during progression of prostate disease.

摘要

前列腺自主神经和感觉轴突控制腺体生长、液体分泌和平滑肌收缩,并在癌症和炎症期间发生重塑。在疾病进展过程中重新激活的形态发生信号通路可能驱动这种轴突重塑。这些通路与前列腺癌和良性前列腺增生中的增殖活动有关。然而,关于哪些发育信号通路引导轴突长入前列腺,我们知之甚少。定义这些通路的第一步是确定轴突亚型何时首次出现在前列腺中。我们通过免疫组织化学方法,在小鼠前列腺发育的胎儿期、新生儿期和成年期绘制了三种轴突亚型(去甲肾上腺素能、胆碱能和肽能)的图谱,从而实现了这一点。我们设计了一种前列腺周围轴突密度定量方法,并测试了成年小鼠背侧和腹侧前列腺近远轴上的神经支配是否均匀。许多轴突直接与其他器官中的神经内分泌细胞相互作用或支配这些细胞,因此我们研究了感觉或自主神经轴突是否支配前列腺中的神经内分泌细胞。我们在胚胎第14.5天首次在前列腺中检测到去甲肾上腺素能、胆碱能和肽能轴突。成年小鼠前列腺近远轴上去甲肾上腺素能和胆碱能轴突密度均匀,而肽能轴突在尿道周围和近端区域更密集。肽能和胆碱能轴突与前列腺神经内分泌细胞密切相关,而去甲肾上腺素能轴突则不然。这些结果为理解小鼠前列腺轴突的发育和组织提供了基础,并为前列腺疾病进展过程中的轴突定量提供了策略。

相似文献

1
A temporal and spatial map of axons in developing mouse prostate.
Histochem Cell Biol. 2019 Jul;152(1):35-45. doi: 10.1007/s00418-019-01784-6. Epub 2019 Apr 11.
2
Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder.
Dev Biol. 2021 Aug;476:18-32. doi: 10.1016/j.ydbio.2021.03.008. Epub 2021 Mar 17.
9
DSCAM promotes axon fasciculation and growth in the developing optic pathway.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1702-1707. doi: 10.1073/pnas.1618606114. Epub 2017 Jan 30.
10
Sympathetic and sensory innervation of the extracerebral vasculature: roles for p75NTR neuronal expression and nerve growth factor.
J Neurosci Res. 1998 May 1;52(3):295-306. doi: 10.1002/(SICI)1097-4547(19980501)52:3<295::AID-JNR6>3.0.CO;2-8.

引用本文的文献

1
Sensory innervation in the prostate and a role for calcitonin gene-related peptide in prostatic epithelial proliferation.
Front Mol Neurosci. 2024 Dec 18;17:1497735. doi: 10.3389/fnmol.2024.1497735. eCollection 2024.
2
Macrophages of multiple hematopoietic origins reside in the developing prostate.
Development. 2024 Aug 15;151(16). doi: 10.1242/dev.203070. Epub 2024 Aug 29.
3
Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome.
World J Mens Health. 2024 Jan;42(1):1-28. doi: 10.5534/wjmh.220248. Epub 2023 Apr 19.
4
In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder.
Curr Res Toxicol. 2021;2:1-18. doi: 10.1016/j.crtox.2021.01.002. Epub 2021 Jan 12.
6
Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder.
Dev Biol. 2021 Aug;476:18-32. doi: 10.1016/j.ydbio.2021.03.008. Epub 2021 Mar 17.
7
Neurophysiological control of urinary bladder storage and voiding-functional changes through development and pathology.
Pediatr Nephrol. 2021 May;36(5):1041-1052. doi: 10.1007/s00467-020-04594-4. Epub 2020 May 15.
9
Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: urethral histology.
Am J Physiol Renal Physiol. 2020 Mar 1;318(3):F617-F627. doi: 10.1152/ajprenal.00540.2019. Epub 2020 Jan 6.

本文引用的文献

1
Neural Sensing of Organ Volume.
Trends Neurosci. 2018 Dec;41(12):911-924. doi: 10.1016/j.tins.2018.07.008. Epub 2018 Aug 22.
2
Adrenergic nerves activate an angio-metabolic switch in prostate cancer.
Science. 2017 Oct 20;358(6361):321-326. doi: 10.1126/science.aah5072.
3
Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.
J Physiol. 2017 Aug 15;595(16):5687-5698. doi: 10.1113/JP274191. Epub 2017 Jul 7.
4
Prostate organogenesis: tissue induction, hormonal regulation and cell type specification.
Development. 2017 Apr 15;144(8):1382-1398. doi: 10.1242/dev.148270.
5
Tridimensional Visualization and Analysis of Early Human Development.
Cell. 2017 Mar 23;169(1):161-173.e12. doi: 10.1016/j.cell.2017.03.008.
6
Neuroendocrine Cells of the Prostate Derive from the Neural Crest.
J Biol Chem. 2017 Feb 3;292(5):2021-2031. doi: 10.1074/jbc.M116.755082. Epub 2016 Dec 21.
7
The mouse prostate: a basic anatomical and histological guideline.
Bosn J Basic Med Sci. 2016 Feb 10;16(1):8-13. doi: 10.17305/bjbms.2016.917.
8
Pulmonary neuroendocrine cells function as airway sensors to control lung immune response.
Science. 2016 Feb 12;351(6274):707-10. doi: 10.1126/science.aad7969. Epub 2016 Jan 7.
9
Developing a functional urinary bladder: a neuronal context.
Front Cell Dev Biol. 2015 Sep 1;3:53. doi: 10.3389/fcell.2015.00053. eCollection 2015.
10
An illustrated anatomical ontology of the developing mouse lower urogenital tract.
Development. 2015 May 15;142(10):1893-908. doi: 10.1242/dev.117903. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验