Suppr超能文献

冰结合蛋白的大小和聚集如何控制其成核效率。

How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency.

机构信息

Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0580 , United States.

出版信息

J Am Chem Soc. 2019 May 8;141(18):7439-7452. doi: 10.1021/jacs.9b01854. Epub 2019 Apr 24.

Abstract

Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how size and aggregation of ice-binding proteins determine the temperature T at which proteins nucleate ice is still lacking. Here, we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2 ± 1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases T, but not enough to compete in efficiency with the bacterial INP. We implement an accurate procedure to determine T of surfaces of finite size using classical nucleation theory, and, after validating the theory against T of the proteins in molecular simulations, we use it to predict T of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the T = -2 °C characteristic of this bacterium. Interestingly, we find that T is a strongly varying nonmonotonic function of the distance between proteins in the aggregates. This indicates that, to achieve maximum freezing efficiency, bacteria must exert exquisite, subangstrom control of the distance between INP in their membrane.

摘要

在低温下茁壮成长的生物会产生冰结合蛋白来管理冰的成核和生长。细菌冰成核蛋白(INP)通常较大,在细胞膜中形成聚集体,而昆虫高活性抗冻蛋白(AFP)则是可溶性的,通常较小。实验表明,较大的冰结合蛋白及其聚集体在较温暖的温度下引发冰的成核。然而,对于冰结合蛋白的大小和聚集如何决定蛋白质引发冰的温度 T,仍然缺乏定量理解。在这里,我们使用分子模拟和成核理论来解决这个问题。模拟表明,2.5nm 长的抗冻蛋白 TmAFP 在均相成核温度以上 2±1°C 的温度下引发冰的成核,这与最近的实验结果非常吻合。我们预测,向 TmAFP 添加冰结合环会增加 T,但不足以与细菌 INP 的效率相竞争。我们实施了一种准确的程序,使用经典成核理论来确定有限大小表面的 T,并且在将理论与分子模拟中的蛋白质的 T 进行验证之后,我们使用它来预测 Ps. syringae 的 INP 的 T 作为聚集体中蛋白质的长度和数量的函数。我们得出结论,具有最多 34 个 INP 的组装体已经达到了该细菌特征性的 T=-2°C。有趣的是,我们发现 T 是一个强烈变化的非单调函数,与聚集体中蛋白质之间的距离有关。这表明,为了实现最大的冷冻效率,细菌必须对其膜中 INP 之间的距离进行极其精确的亚埃控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验