Suppr超能文献

通过反转场调制对 2ns 电刺激的生物响应。

Modulation of biological responses to 2 ns electrical stimuli by field reversal.

机构信息

Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way Suite 300, Norfolk, VA 23508, USA.

Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way Suite 300, Norfolk, VA 23508, USA.

出版信息

Biochim Biophys Acta Biomembr. 2019 Jun 1;1861(6):1228-1239. doi: 10.1016/j.bbamem.2019.03.019. Epub 2019 Apr 11.

Abstract

Nanosecond bipolar pulse cancellation, a recently discovered phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (>100 μs) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). Here we report 2 ns bipolar pulse cancellation, extending the scale of previously published results down to the time required to construct the permeabilizing lipid electropores observed in molecular simulations. We add new cancellation endpoints, and we describe new bipolar pulse effects that are distinct from cancellation. This new data, which includes transport of cationic and anionic permeability indicators, fluorescence of membrane labels, and patterns of entry into permeabilized cells, is not readily explained by the accelerated discharge mechanism. We suggest that multi-step processes that involve first charged species movement and then responses of cellular homeostasis and repair mechanisms are more likely to explain the broad range of reported results.

摘要

纳秒双相脉冲消除,一种新发现的现象,是通过相反极性的第二个脉冲来调节单极电脉冲暴露的效果。这种通过反转电场方向来衰减生物反应的现象已经在多种终点的脉冲持续时间为 60ns 到 900ns 的范围内被报道过,而在传统的电穿孔脉冲中则不会观察到这种现象,因为这些脉冲的持续时间长得多(>100μs),无论极性如何,它们都是相加的。最合理的拟议机制涉及离子在膜界面的驱动迁移(加速膜放电)。在这里,我们报告了 2ns 的双相脉冲消除,将之前发表的结果的范围扩展到了在分子模拟中观察到的形成通透脂质电穿孔所需的时间。我们添加了新的消除终点,并描述了与消除不同的新的双相脉冲效应。这些新数据包括阳离子和阴离子通透性指示剂的传输、膜标记的荧光以及进入通透化细胞的模式,这些数据用加速放电机制很难解释。我们认为,涉及首先是带电物质的运动,然后是细胞内稳态和修复机制的反应的多步骤过程更有可能解释广泛报道的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验