Suppr超能文献

生物合成组织工程气管移植物在小鼠模型中的接种与植入

Seeding and Implantation of a Biosynthetic Tissue-engineered Tracheal Graft in a Mouse Model.

作者信息

Wiet Matthew G, Dharmadhikari Sayali, White Audrey, Reynolds Susan D, Johnson Jed, Breuer Christopher K, Chiang Tendy

机构信息

Department of Otolaryngology Head & Neck Surgery, Nationwide Children's Hospital; The Ohio State University College of Medicine.

Department of Otolaryngology Head & Neck Surgery, Nationwide Children's Hospital; Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital.

出版信息

J Vis Exp. 2019 Apr 1(146). doi: 10.3791/59173.

Abstract

Treatment options for congenital or secondary long segment tracheal defects have historically been limited due to an inability to replace functional tissue. Tissue engineering holds great promise as a potential solution with its ability to integrate cells and signaling molecules into a 3-dimensional scaffold. Recent work with tissue engineered tracheal grafts (TETGs) has seen some success but their translation has been limited by graft stenosis, graft collapse, and delayed epithelialization. In order to investigate the mechanisms driving these issues, we have developed a mouse model for tissue engineered tracheal graft implantation. TETGs were constructed using electrospun polymers polyethylene terephthalate (PET) and polyurethane (PU) in a mixture of PET and PU (20:80 percent weight). Scaffolds were then seeded using bone marrow mononuclear cells isolated from 6-8 week-old C57BL/6 mice by gradient centrifugation. Ten million cells per graft were seeded onto the lumen of the scaffold and allowed to incubate overnight before implantation between the third and seventh tracheal rings. These grafts were able to recapitulate the findings of stenosis and delayed epithelialization as demonstrated by histological analysis and lack of Keratin 5 and Keratin 14 basal epithelial cells on immunofluorescence. This model will serve as a tool for investigating cellular and molecular mechanisms involved in host remodeling.

摘要

由于无法替换功能性组织,先天性或继发性长节段气管缺损的治疗选择在历史上一直有限。组织工程作为一种潜在的解决方案具有巨大的前景,因为它能够将细胞和信号分子整合到三维支架中。最近使用组织工程气管移植物(TETG)的研究取得了一些成功,但其转化受到移植物狭窄、移植物塌陷和上皮化延迟的限制。为了研究导致这些问题的机制,我们开发了一种用于组织工程气管移植物植入的小鼠模型。TETG是使用电纺聚合物聚对苯二甲酸乙二酯(PET)和聚氨酯(PU)以PET和PU的混合物(重量比20:80)构建的。然后通过梯度离心从6-8周龄的C57BL/6小鼠中分离骨髓单个核细胞接种到支架上。每个移植物接种1000万个细胞到支架腔内,在植入第三至第七气管环之间之前孵育过夜。如组织学分析以及免疫荧光显示缺乏角蛋白5和角蛋白14基底上皮细胞所表明的,这些移植物能够重现狭窄和上皮化延迟的结果。该模型将作为研究宿主重塑中涉及的细胞和分子机制的工具。

相似文献

3
Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.
Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.
4
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
5
Effect of cell seeding on neotissue formation in a tissue engineered trachea.
J Pediatr Surg. 2016 Jan;51(1):49-55. doi: 10.1016/j.jpedsurg.2015.10.008. Epub 2015 Oct 22.
6
Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds.
Biomaterials. 2014 Jul;35(20):5307-5315. doi: 10.1016/j.biomaterials.2014.03.015. Epub 2014 Apr 3.
7
Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.
Otolaryngol Head Neck Surg. 2019 Sep;161(3):458-467. doi: 10.1177/0194599819844754. Epub 2019 Apr 30.
8
Trachea Engineering Using a Centrifugation Method and Mouse-Induced Pluripotent Stem Cells.
Tissue Eng Part C Methods. 2018 Sep;24(9):524-533. doi: 10.1089/ten.TEC.2018.0115.
10
Electrospun scaffolds limit the regenerative potential of the airway epithelium.
Laryngoscope Investig Otolaryngol. 2019 Jul 16;4(4):446-454. doi: 10.1002/lio2.289. eCollection 2019 Aug.

引用本文的文献

1
Long-Term Chondrocyte Retention in Partially Decellularized Tracheal Grafts.
Otolaryngol Head Neck Surg. 2024 Jan;170(1):239-244. doi: 10.1002/ohn.409. Epub 2023 Jun 27.
3
Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement.
J Tissue Eng. 2021 Jun 6;12:20417314211017417. doi: 10.1177/20417314211017417. eCollection 2021 Jan-Dec.
4
Applications of Electrospinning for Tissue Engineering in Otolaryngology.
Ann Otol Rhinol Laryngol. 2021 Apr;130(4):395-404. doi: 10.1177/0003489420959692. Epub 2020 Sep 25.
5
Tissue engineering applications in otolaryngology-The state of translation.
Laryngoscope Investig Otolaryngol. 2020 Jun 19;5(4):630-648. doi: 10.1002/lio2.416. eCollection 2020 Aug.
6
Spatial and Temporal Analysis of Host Cells in Tracheal Graft Implantation.
Laryngoscope. 2021 Feb;131(2):E340-E345. doi: 10.1002/lary.28781. Epub 2020 Jun 10.

本文引用的文献

1
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
2
The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft.
Regen Med. 2017 Apr;12(3):249-261. doi: 10.2217/rme-2016-0141. Epub 2017 May 19.
3
Clinical Translation of Tissue Engineered Trachea Grafts.
Ann Otol Rhinol Laryngol. 2016 Nov;125(11):873-885. doi: 10.1177/0003489416656646. Epub 2016 Jul 12.
4
Effect of cell seeding on neotissue formation in a tissue engineered trachea.
J Pediatr Surg. 2016 Jan;51(1):49-55. doi: 10.1016/j.jpedsurg.2015.10.008. Epub 2015 Oct 22.
5
Tracheal reconstruction in a canine model.
Otolaryngol Head Neck Surg. 2014 Mar;150(3):428-33. doi: 10.1177/0194599813516751. Epub 2013 Dec 23.
6
Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study.
Lancet. 2012 Sep 15;380(9846):994-1000. doi: 10.1016/S0140-6736(12)60737-5. Epub 2012 Jul 26.
7
Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study.
Lancet. 2011 Dec 10;378(9808):1997-2004. doi: 10.1016/S0140-6736(11)61715-7. Epub 2011 Nov 24.
8
Biomechanical and angiogenic properties of tissue-engineered rat trachea using genipin cross-linked decellularized tissue.
Biomaterials. 2012 Jan;33(3):780-9. doi: 10.1016/j.biomaterials.2011.10.008. Epub 2011 Oct 24.
9
Tracheal Basal cells: a facultative progenitor cell pool.
Am J Pathol. 2010 Jul;177(1):362-76. doi: 10.2353/ajpath.2010.090870. Epub 2010 Jun 3.
10
Clinical transplantation of a tissue-engineered airway.
Lancet. 2008 Dec 13;372(9655):2023-30. doi: 10.1016/S0140-6736(08)61598-6. Epub 2008 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验