Suppr超能文献

电纺纳米纤维支架气管置换的小鼠模型

Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.

作者信息

Dharmadhikari Sayali, Best Cameron A, King Nakesha, Henderson Michaela, Johnson Jed, Breuer Christopher K, Chiang Tendy

机构信息

1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.

2 Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA.

出版信息

Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.

Abstract

OBJECTIVES

The clinical experience with tissue-engineered tracheal grafts (TETGs) has been fraught with graft stenosis and delayed epithelialization. A mouse model of orthotopic replacement that recapitulates the clinical findings would facilitate the study of the cellular and molecular mechanisms underlying graft stenosis.

METHODS

Electrospun nanofiber tracheal scaffolds were created using nonresorbable (polyethylene terephthalate + polyurethane) and co-electrospun resorbable (polylactide-co-caprolactone/polyglycolic acid) polymers (n = 10/group). Biomechanical testing was performed to compare load displacement of nanofiber scaffolds to native mouse tracheas. Mice underwent orthotopic tracheal replacement with syngeneic grafts (n = 5) and nonresorbable (n = 10) and resorbable (n = 10) scaffolds. Tissue at the anastomosis was evaluated using hematoxylin and eosin (H&E), K5+ basal cells were evaluated with the help of immunofluorescence testing, and cellular infiltration of the scaffold was quantified. Micro computed tomography was performed to assess graft patency and correlate radiographic and histologic findings with respiratory symptoms.

RESULTS

Synthetic scaffolds were supraphysiologic in compression tests compared to native mouse trachea ( P < .0001). Nonresorbable scaffolds were stiffer than resorbable scaffolds ( P = .0004). Eighty percent of syngeneic recipients survived to the study endpoint of 60 days postoperatively. Mean survival with nonresorbable scaffolds was 11.40 ± 7.31 days and 6.70 ± 3.95 days with resorbable scaffolds ( P = .095). Stenosis manifested with tissue overgrowth in nonresorbable scaffolds and malacia in resorbable scaffolds. Quantification of scaffold cellular infiltration correlated with length of survival in resorbable scaffolds (R = 0.95, P = .0051). Micro computed tomography demonstrated the development of graft stenosis at the distal anastomosis on day 5 and progressed until euthanasia was performed on day 11.

CONCLUSION

Graft stenosis seen in orthotopic tracheal replacement with synthetic tracheal scaffolds can be modeled in mice. The wide array of lineage tracing and transgenic mouse models available will permit future investigation of the cellular and molecular mechanisms underlying TETG stenosis.

摘要

目的

组织工程气管移植物(TETG)的临床应用一直饱受移植物狭窄和上皮化延迟之苦。一种能重现临床发现的原位置换小鼠模型将有助于研究移植物狭窄背后的细胞和分子机制。

方法

使用不可吸收(聚对苯二甲酸乙二酯+聚氨酯)和共电纺可吸收(聚丙交酯-共-己内酯/聚乙醇酸)聚合物制作电纺纳米纤维气管支架(每组n = 10)。进行生物力学测试以比较纳米纤维支架与天然小鼠气管的载荷位移。小鼠接受同基因移植物(n = 5)以及不可吸收(n = 10)和可吸收(n = 10)支架的原位气管置换。使用苏木精和伊红(H&E)对吻合处组织进行评估,借助免疫荧光测试评估K5 + 基底细胞,并对支架的细胞浸润进行定量分析。进行微型计算机断层扫描以评估移植物通畅情况,并将影像学和组织学结果与呼吸症状相关联。

结果

与天然小鼠气管相比,合成支架在压缩测试中表现出超生理状态(P <.0001)。不可吸收支架比可吸收支架更硬(P =.0004)。80%的同基因受体存活至术后60天的研究终点。不可吸收支架的平均存活时间为11.40±7.31天,可吸收支架为6.70±3.95天(P =.095)。狭窄表现为不可吸收支架中的组织过度生长和可吸收支架中的软化。支架细胞浸润的定量分析与可吸收支架中的存活时间相关(R = 0.95,P =.0051)。微型计算机断层扫描显示在第5天远端吻合处出现移植物狭窄,并持续发展直至在第11天实施安乐死。

结论

在小鼠中可以模拟用合成气管支架进行原位气管置换时出现的移植物狭窄。现有的大量谱系追踪和转基因小鼠模型将有助于未来对TETG狭窄背后的细胞和分子机制进行研究。

相似文献

1
Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.电纺纳米纤维支架气管置换的小鼠模型
Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.
5
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.设计用于临床前评估的组织工程气管支架。
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
6
Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.影响合成组织工程气管置换不良结局的因素。
Otolaryngol Head Neck Surg. 2019 Sep;161(3):458-467. doi: 10.1177/0194599819844754. Epub 2019 Apr 30.
9
Effect of cell seeding on neotissue formation in a tissue engineered trachea.细胞接种对组织工程气管新组织形成的影响。
J Pediatr Surg. 2016 Jan;51(1):49-55. doi: 10.1016/j.jpedsurg.2015.10.008. Epub 2015 Oct 22.

引用本文的文献

本文引用的文献

1
U.K. trials of airway transplants are in limbo.英国气道移植试验陷入停滞。
Science. 2018 Mar 30;359(6383):1448-1450. doi: 10.1126/science.359.6383.1448.
2
Designing a tissue-engineered tracheal scaffold for preclinical evaluation.设计用于临床前评估的组织工程气管支架。
Int J Pediatr Otorhinolaryngol. 2018 Jan;104:155-160. doi: 10.1016/j.ijporl.2017.10.036. Epub 2017 Nov 22.
5
Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.腹壁的力学性能及用于疝修补的生物材料。
J Mech Behav Biomed Mater. 2017 Oct;74:411-427. doi: 10.1016/j.jmbbm.2017.05.008. Epub 2017 May 6.
9
Clinical Translation of Tissue Engineered Trachea Grafts.组织工程气管移植物的临床翻译
Ann Otol Rhinol Laryngol. 2016 Nov;125(11):873-885. doi: 10.1177/0003489416656646. Epub 2016 Jul 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验