Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Canada.
BMC Biotechnol. 2019 Apr 15;19(1):21. doi: 10.1186/s12896-019-0515-9.
A robust scalable method for producing enucleated red blood cells (RBCs) is not only a process to produce packed RBC units for transfusion but a potential platform to produce modified RBCs with applications in advanced cellular therapy. Current strategies for producing RBCs have shortcomings in the limited self-renewal capacity of progenitor cells, or difficulties in effectively enucleating erythroid cell lines. We explored a new method to produce RBCs by inducibly expressing c-Myc in primary erythroid progenitor cells and evaluated the proliferative and maturation potential of these modified cells.
Primary erythroid progenitor cells were genetically modified with an inducible gene transfer vector expressing a single transcription factor, c-Myc, and all the gene elements required to achieve dox-inducible expression. Genetically modified cells had enhanced proliferative potential compared to control cells, resulting in exponential growth for at least 6 weeks. Inducibly proliferating erythroid (IPE) cells were isolated with surface receptors similar to colony forming unit-erythroid (CFU-Es), and after removal of ectopic c-Myc expression cells hemoglobinized, decreased in cell size to that of native RBCs, and enucleated achieving cultures with 17% enucleated cells. Experiments with IPE cells at various levels of ectopic c-Myc expression provided insight into differentiation dynamics of the modified cells, and an optimized two-stage differentiation strategy was shown to promote greater expansion and maturation.
Genetic engineering of adult erythroid progenitor cells with an inducible c-Myc vector established an erythroid progenitor cell line that could produce RBCs, demonstrating the potential of this approach to produce large quantities of RBCs and modified RBC products.
一种强大的可扩展方法来生产去核红细胞(RBC)不仅是一个生产用于输血的浓缩 RBC 单位的过程,而且是一个具有应用于先进细胞治疗的潜力平台,用于生产经过修饰的 RBC。目前生产 RBC 的策略在祖细胞的有限自我更新能力或在有效去核红细胞系方面存在困难。我们探索了一种通过在原代红细胞祖细胞中诱导表达 c-Myc 来生产 RBC 的新方法,并评估了这些修饰细胞的增殖和成熟潜力。
原代红细胞祖细胞通过表达单个转录因子 c-Myc 的可诱导基因转移载体进行基因修饰,并包含实现 dox 诱导表达所需的所有基因元件。与对照细胞相比,修饰细胞具有增强的增殖潜力,导致至少 6 周的指数增长。通过表面受体分离出可诱导增殖的红细胞(IPE)细胞,这些受体类似于集落形成单位-红细胞(CFU-E),并且在去除异位 c-Myc 表达后,细胞血红蛋白化,细胞大小减小到天然 RBC 的大小,并去核,实现了 17%去核细胞的培养。在不同异位 c-Myc 表达水平下对 IPE 细胞进行的实验提供了对修饰细胞分化动态的深入了解,并显示了优化的两阶段分化策略可促进更大的扩增和成熟。
用可诱导的 c-Myc 载体对成体红细胞祖细胞进行基因工程,建立了一种能够产生 RBC 的红细胞祖细胞系,证明了这种方法生产大量 RBC 和修饰 RBC 产品的潜力。