Wolf Nina M, Lee Hyun, Choules Mary P, Pauli Guido F, Phansalkar Rasika, Anderson Jeffrey R, Gao Wei, Ren Jinhong, Santarsiero Bernard D, Lee Hanki, Cheng Jinhua, Jin Ying-Yu, Ho Ngoc Anh, Duc Nguyen Minh, Suh Joo-Won, Abad-Zapatero Celerino, Cho Sanghyun
Institute for Tuberculosis Research, College of Pharmacy , University of Illinois at Chicago , 833 S. Wood Street , Chicago , Illinois 60612 , United States.
Biophysics Core at the Research Resource Center , University of Illinois at Chicago , 1100 S. Ashland Street , Chicago , Illinois 60612 , United States.
ACS Infect Dis. 2019 Jun 14;5(6):829-840. doi: 10.1021/acsinfecdis.8b00276. Epub 2019 May 3.
Addressing the urgent need to develop novel drugs against drug-resistant Mycobacterium tuberculosis ( M. tb) strains, ecumicin (ECU) and rufomycin I (RUFI) are being explored as promising new leads targeting cellular proteostasis via the caseinolytic protein ClpC1. Details of the binding topology and chemical mode of (inter)action of these cyclopeptides help drive further development of novel potency-optimized entities as tuberculosis drugs. ClpC1 M. tb protein constructs with mutations driving resistance to ECU and RUFI show reduced binding affinity by surface plasmon resonance (SPR). Despite certain structural similarities, ECU and RUFI resistant mutation sites did not overlap in their SPR binding patterns. SPR competition experiments show ECU prevents RUFI binding, whereas RUFI partially inhibits ECU binding. The X-ray structure of the ClpC1-NTD-RUFI complex reveals distinct differences compared to the previously reported ClpC1-NTD-cyclomarin A structure. Surprisingly, the complex structure revealed that the epoxide moiety of RUFI opened and covalently bound to ClpC1-NTD via the sulfur atom of Met1. Furthermore, RUFI analogues indicate that the epoxy group of RUFI is critical for binding and bactericidal activity. The outcomes demonstrate the significance of ClpC1 as a novel target and the importance of SAR analysis of identified macrocyclic peptides for drug discovery.
为满足开发针对耐药结核分枝杆菌(M. tb)菌株的新型药物的迫切需求,正在探索将依库米星(ECU)和鲁夫霉素I(RUFI)作为通过酪蛋白水解蛋白ClpC1靶向细胞蛋白质稳态的有前景的新先导化合物。这些环肽的结合拓扑结构和(相互)作用的化学模式细节有助于推动新型药效优化实体作为结核病药物的进一步开发。对ECU和RUFI具有耐药性的ClpC1 M. tb蛋白构建体通过表面等离子体共振(SPR)显示出降低的结合亲和力。尽管存在某些结构相似性,但ECU和RUFI耐药突变位点在其SPR结合模式中并不重叠。SPR竞争实验表明ECU可阻止RUFI结合,而RUFI部分抑制ECU结合。ClpC1-NTD-RUFI复合物的X射线结构与先前报道的ClpC1-NTD-环马林A结构相比显示出明显差异。令人惊讶的是,复合物结构表明RUFI的环氧部分打开并通过Met1的硫原子与ClpC1-NTD共价结合。此外,RUFI类似物表明RUFI的环氧基团对于结合和杀菌活性至关重要。这些结果证明了ClpC1作为新靶点的重要性以及对已鉴定大环肽进行构效关系分析在药物发现中的重要性。