文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量分析小鼠癌症中的微环境代谢物,揭示肿瘤营养供应的决定因素。

Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability.

机构信息

Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.

Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States.

出版信息

Elife. 2019 Apr 16;8:e44235. doi: 10.7554/eLife.44235.


DOI:10.7554/eLife.44235
PMID:30990168
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6510537/
Abstract

Cancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we utilized quantitative metabolomics methods to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors.

摘要

癌细胞代谢受到微环境因素的强烈影响,包括营养物质的可利用性。因此,了解微环境中营养物质的水平对于理解肿瘤代谢至关重要。为了测量肿瘤可用的细胞外营养物质水平,我们利用定量代谢组学方法测量了血浆和肿瘤间质液(灌注肿瘤的细胞外液)中超过 118 种代谢物的绝对浓度。比较肿瘤间质液和血浆中的营养物质水平表明,肿瘤可用的营养物质与循环中存在的营养物质不同。此外,通过比较鼠胰腺和肺腺癌的同源和移植模型的间质液营养物质水平,我们发现肿瘤类型、解剖位置和动物饮食影响局部营养物质的可利用性。这些数据全面描述了广泛使用的肺和胰腺癌模型中肿瘤微环境中的营养物质,并确定了影响肿瘤中代谢物水平的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/d5eca2484a49/elife-44235-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/8d9d06f2269b/elife-44235-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/a39d39efa8b3/elife-44235-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/1e87698c4433/elife-44235-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/87dd511fcfa1/elife-44235-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/3228f06904a8/elife-44235-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/8e0728ddfd45/elife-44235-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2de00e8cdfad/elife-44235-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/7e74d2f93567/elife-44235-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/91b1e1259ea4/elife-44235-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/af59055c68d8/elife-44235-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/1c527c2524fc/elife-44235-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/d2465a71a5b0/elife-44235-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2c2747627e00/elife-44235-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/f5fcd2b755c2/elife-44235-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/f5206de4698c/elife-44235-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/ec0a603f002d/elife-44235-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/0dadf8495468/elife-44235-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/315860908aeb/elife-44235-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/952f2c3131d9/elife-44235-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/0b7a3040093c/elife-44235-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/296d4b1fa368/elife-44235-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2b28b32fdff0/elife-44235-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/928e715811ef/elife-44235-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/be51dcfaac02/elife-44235-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/d5eca2484a49/elife-44235-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/8d9d06f2269b/elife-44235-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/a39d39efa8b3/elife-44235-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/1e87698c4433/elife-44235-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/87dd511fcfa1/elife-44235-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/3228f06904a8/elife-44235-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/8e0728ddfd45/elife-44235-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2de00e8cdfad/elife-44235-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/7e74d2f93567/elife-44235-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/91b1e1259ea4/elife-44235-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/af59055c68d8/elife-44235-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/1c527c2524fc/elife-44235-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/d2465a71a5b0/elife-44235-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2c2747627e00/elife-44235-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/f5fcd2b755c2/elife-44235-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/f5206de4698c/elife-44235-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/ec0a603f002d/elife-44235-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/0dadf8495468/elife-44235-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/315860908aeb/elife-44235-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/952f2c3131d9/elife-44235-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/0b7a3040093c/elife-44235-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/296d4b1fa368/elife-44235-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/2b28b32fdff0/elife-44235-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/928e715811ef/elife-44235-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/be51dcfaac02/elife-44235-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053c/6510537/d5eca2484a49/elife-44235-fig6-figsupp2.jpg

相似文献

[1]
Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability.

Elife. 2019-4-16

[2]
Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability.

Elife. 2024-5-24

[3]
Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis.

Elife. 2023-5-31

[4]
Isolation and Quantification of Metabolite Levels in Murine Tumor Interstitial Fluid by LC/MS.

Bio Protoc. 2019-11-20

[5]
Isolation of Proximal Fluids to Investigate the Tumor Microenvironment of Pancreatic Adenocarcinoma.

J Vis Exp. 2020-11-5

[6]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[7]
Regulation of tumor invasion by interstitial fluid flow.

Phys Biol. 2011-2-7

[8]
Metabolomics Analyses of Cancer Cells in Controlled Microenvironments.

Methods Mol Biol. 2016

[9]
Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies.

Dis Model Mech. 2018-8-7

[10]
Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability.

bioRxiv. 2024-4-8

引用本文的文献

[1]
An alternative route for β-hydroxybutyrate metabolism supports cytosolic acetyl-CoA synthesis in cancer cells.

Nat Metab. 2025-9-8

[2]
Differential cell survival outcomes in response to diverse amino acid stress.

Life Sci Alliance. 2025-9-5

[3]
Redox-Regulated Pathways in Glioblastoma Stem-like Cells: Mechanistic Insights and Therapeutic Implications.

Brain Sci. 2025-8-19

[4]
Experimental models of pancreas cancer: what has been the impact for precision medicine?

J Clin Invest. 2025-8-15

[5]
Enhancement of anti-programmed cell death protein-1 immunotherapy in non-small cell lung cancer using arginine and citrulline supplementation.

J Thorac Dis. 2025-7-31

[6]
Metabolism and epigenetics in cancer: toward personalized treatment.

Front Endocrinol (Lausanne). 2025-7-25

[7]
Inhibition of TFF3 improves the infiltration and function of CD8 T cells by downregulating the expression of PD-L1 in colorectal cancer.

Int J Colorectal Dis. 2025-8-5

[8]
De novo pyrimidine biosynthesis inhibition synergizes with BCL-X targeting in pancreatic cancer.

Nat Commun. 2025-7-30

[9]
Oxidized phospholipid damage signals as modulators of immunity.

Open Biol. 2025-7

[10]
Serine-Driven Metabolic Plasticity Drives Adaptive Resilience in Pancreatic Cancer Cells.

Antioxidants (Basel). 2025-7-7

本文引用的文献

[1]
Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting.

Cell Metab. 2019-3-21

[2]
Synthetic Lethality and Cancer - Penetrance as the Major Barrier.

Trends Cancer. 2018-10

[3]
Profiling the Metabolism of Human Cells by Deep C Labeling.

Cell Chem Biol. 2018-9-27

[4]
Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies.

Dis Model Mech. 2018-8-7

[5]
Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures.

Cell. 2018-8-9

[6]
Translating In Vitro T Cell Metabolic Findings to In Vivo Tumor Models of Nutrient Competition.

Cell Metab. 2018-8-7

[7]
Systems analysis of intracellular pH vulnerabilities for cancer therapy.

Nat Commun. 2018-7-31

[8]
Altered exocrine function can drive adipose wasting in early pancreatic cancer.

Nature. 2018-6-20

[9]
Immune therapies in pancreatic ductal adenocarcinoma: Where are we now?

World J Gastroenterol. 2018-5-28

[10]
The nutrient environment affects therapy.

Science. 2018-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索