School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
Center for Bioinformatics and Computational Biology, Institute of Advanced Computer Studies, Department of Computer Science, University of Maryland, College Park, MD, 20742, USA.
Nat Commun. 2018 Jul 31;9(1):2997. doi: 10.1038/s41467-018-05261-x.
A reverse pH gradient is a hallmark of cancer metabolism, manifested by extracellular acidosis and intracellular alkalization. While consequences of extracellular acidosis are known, the roles of intracellular alkalization are incompletely understood. By reconstructing and integrating enzymatic pH-dependent activity profiles into cell-specific genome-scale metabolic models, we develop a computational methodology that explores how intracellular pH (pHi) can modulate metabolism. We show that in silico, alkaline pHi maximizes cancer cell proliferation coupled to increased glycolysis and adaptation to hypoxia (i.e., the Warburg effect), whereas acidic pHi disables these adaptations and compromises tumor cell growth. We then systematically identify metabolic targets (GAPDH and GPI) with predicted amplified anti-cancer effects at acidic pHi, forming a novel therapeutic strategy. Experimental testing of this strategy in breast cancer cells reveals that it is particularly effective against aggressive phenotypes. Hence, this study suggests essential roles of pHi in cancer metabolism and provides a conceptual and computational framework for exploring pHi roles in other biomedical domains.
相反的 pH 梯度是癌症代谢的一个标志,表现为细胞外酸中毒和细胞内碱化。虽然已经知道细胞外酸中毒的后果,但细胞内碱化的作用还不完全清楚。通过将酶的 pH 依赖性活性谱重建和整合到细胞特异性基因组规模的代谢模型中,我们开发了一种计算方法,探讨了细胞内 pH(pHi)如何调节代谢。我们表明,在计算机模拟中,碱性 pHi 使癌细胞增殖最大化,同时伴随着糖酵解增加和对缺氧的适应(即 Warburg 效应),而酸性 pHi 则会抑制这些适应并损害肿瘤细胞的生长。然后,我们系统地确定了代谢靶点(GAPDH 和 GPI),它们在酸性 pHi 下具有预测的放大抗癌作用,形成了一种新的治疗策略。在乳腺癌细胞中的实验测试表明,该策略对侵袭性表型特别有效。因此,本研究表明了 pHi 在癌症代谢中的重要作用,并为探索 pHi 在其他生物医学领域中的作用提供了一个概念和计算框架。