Suppr超能文献

一种用于鉴定与癌症生存相关的突变子网的有效算法。

An Efficient Algorithm for Identifying Mutated Subnetworks Associated with Survival in Cancer.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1582-1594. doi: 10.1109/TCBB.2019.2911069. Epub 2019 Apr 15.

Abstract

Protein-protein interaction (PPI) network models interconnections between protein-encoding genes. A group of proteins that perform similar functions are often connected to each other in the PPI network. The corresponding genes form pathways or functional modules. Mutation in protein-encoding genes affect behavior of pathways. This results in initiation, progression, and severity of diseases that propagates through pathways. In this work, we integrate mutation, survival information of patients, and PPI network to identify connected subnetworks associated with survival. We define the computational problem using a fitness function called log-rank statistic to score subnetworks. Log-rank statistic compares the survival between two populations. We propose a novel method, Survival Associated Mutated Subnetwork (SAMS) that adopts genetic algorithm strategy to find the connected subnetwork within the PPI network whose mutation yields highest log-rank statistic. We test on real cancer and synthetic datasets. SAMS generate solutions in negligible time while the state-of-art method in literature takes exponential time. Log-rank statistic of SAMS selected mutated subnetworks are comparable to the method. Our result genesets show significant overlap with well-known cancer driver genes derived from curated datasets and studies in literature, display high text-mining score in terms of number of citations combined with disease-specific keywords in PubMed, and identify pathways having high biological relevance.

摘要

蛋白质-蛋白质相互作用(PPI)网络模型相互连接蛋白质编码基因。在 PPI 网络中,执行相似功能的一组蛋白质通常彼此连接。相应的基因形成途径或功能模块。蛋白质编码基因的突变会影响途径的行为。这导致通过途径传播的疾病的起始、进展和严重程度。在这项工作中,我们整合突变、患者的生存信息和 PPI 网络,以识别与生存相关的连接子网络。我们使用称为对数秩统计的拟合函数定义计算问题,以对子网络进行评分。对数秩统计比较两个群体之间的生存情况。我们提出了一种新的方法,称为生存相关突变子网络(SAMS),它采用遗传算法策略来寻找 PPI 网络中连接的子网络,其突变产生最高的对数秩统计。我们在真实的癌症和合成数据集上进行了测试。SAMS 在可忽略的时间内生成解决方案,而文献中的最先进方法则需要指数时间。SAMS 选择的突变子网的对数秩统计与方法相当。我们的结果基因集与从已审核数据集和文献研究中得出的已知癌症驱动基因有显著重叠,在 PubMed 中结合疾病特定关键字的引用数量方面具有较高的文本挖掘得分,并确定具有高生物学相关性的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验