Suppr超能文献

深度 MS/MS 辅助结构相似性评分法用于未知代谢物鉴定。

Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification.

机构信息

College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , People's Republic of China.

出版信息

Anal Chem. 2019 May 7;91(9):5629-5637. doi: 10.1021/acs.analchem.8b05405. Epub 2019 Apr 24.

Abstract

Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.

摘要

串联质谱(MS/MS)是代谢物结构注释的主力,因为它可以提供丰富的结构信息。目前,代谢物的鉴定主要依赖于将实验谱与公共或内部光谱数据库进行查询。这种鉴定方法受到数据库中可用谱的严重限制。尽管代谢组包含大量不同功能的代谢物,但整个代谢组是由通过生物反应从有限数量的初始代谢物衍生而来的。在每个生物反应中,反应物和产物通常会改变一些亚结构,但仍然具有结构相关性。这些结构相关的代谢物通常具有相关的 MS/MS 谱,这为通过已知代谢物来鉴定未知代谢物提供了可能性。然而,探索 MS/MS 谱与结构相似性之间的内在关系具有挑战性。在这项研究中,我们提出了基于深度学习的 MS/MS 辅助结构相似性评分(DeepMASS)方法,该方法可以使用 MS/MS 谱和深度神经网络对未知代谢物与已知代谢物的结构相似性进行评分。我们在 KEGG 中 662 种化合物的 MS/MS 谱上进行了留一交叉验证评估,并在 Shimadzu LC-ESI-IT-TOF 和 Bruker Compact LC-ESI-QTOF 测量的男性不育研究的生物标志物的外部测试上进行了评估。结果表明,如果数据库中存在结构相关的代谢物,则可以有效鉴定未知化合物。它为现有 MS/MS 数据库中的代谢物鉴定提供了一种有效的扩展方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验