Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran.
J Phys Chem B. 2019 May 9;123(18):4070-4084. doi: 10.1021/acs.jpcb.9b01799. Epub 2019 Apr 29.
Amino acid choline-based ionic liquids (AACBILs) have high biodegradability, low toxicity, availability, low cost, and high thermal stability compared to the traditional ionic liquids (ILs). In this work, the volumetric, structural, and dynamical properties of three AACBILs, that is, choline alanine ([CH][Ala]), choline β-alanine ([CH][β-Ala]), and choline phenylalanine ([CH][Phe]) were investigated using the quantum mechanical calculations and also molecular dynamics simulations in both gas and liquid phases. The density functional theory calculations, noncovalent interactions, and also the quantum theory of atoms in molecules methods have been used to investigate the hydrogen bonds, interaction energies, and also charge transfers between the ions of the studied ILs. Density, isobaric expansion coefficient, mean square displacement (MSD), self-diffusivity, viscosity, electrical conductivity, and transference numbers have been computed for the studied AACBILs in different temperatures and at 0.1 MPa. There is a satisfactory agreement between the calculated data with the corresponding experimental values where they were available. Structural properties including radial distribution functions and spatial distribution functions of cations and anions were investigated. The results showed that because of the presence of an amine group away from the carboxylate group and also the absence of the planar phenyl group in the anion, the interactions between ionic pairs in [CH][β-Ala] are stronger than interactions between ions in [CH][Ala] and [CH][Phe]. The results showed that the order of diffusions and electrical conductivities is [CH][Ala] > [CH][β-Ala] > [CH][Phe], which can be interpreted by different electrostatic, van der Waals, and hydrogen interactions in these ILs. Our study provides considerable molecular insight into the structural features and dynamics of these biodegradable ILs.
与传统的离子液体(ILs)相比,氨基酸胆碱基离子液体(AACBILs)具有高生物降解性、低毒性、可用性、低成本和高热稳定性。在这项工作中,使用量子力学计算和分子动力学模拟,研究了三种 AACBILs,即胆碱丙氨酸([CH][Ala])、胆碱β-丙氨酸([CH][β-Ala])和胆碱苯丙氨酸([CH][Phe])在气相和液相中的体积、结构和动力学性质。密度泛函理论计算、非共价相互作用以及原子在分子中的量子理论方法被用于研究所研究的 ILs 中离子之间的氢键、相互作用能和电荷转移。在不同温度和 0.1 MPa 下,计算了所研究的 AACBILs 的密度、等压膨胀系数、均方位移(MSD)、自扩散系数、粘度、电导率和迁移数。在所提供的实验值可用的情况下,计算数据与相应的实验值之间存在令人满意的一致性。研究了包括阳离子和阴离子径向分布函数和空间分布函数在内的结构特性。结果表明,由于氨基远离羧酸盐基团,而且阴离子中不存在平面苯基基团,因此[CH][β-Ala]中离子对之间的相互作用强于[CH][Ala]和[CH][Phe]中离子之间的相互作用。结果表明,扩散和电导率的顺序为[CH][Ala]>[CH][β-Ala]>[CH][Phe],这可以通过这些 ILs 中的不同静电、范德华和氢键相互作用来解释。我们的研究为这些可生物降解的 ILs 的结构特征和动力学提供了相当大的分子洞察力。